Towards development of new antimalarial compounds through in silico and in vitro assays.

Comput Biol Chem

Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil; Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Brazil; Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Brazil. Electronic address:

Published: August 2024

Malaria is one of most widespread infectious disease in world. The antimalarial therapy presents a series of limitations, such as toxicity and the emergence of resistance, which makes the search for new drugs urgent. Thus, it becomes necessary to explore essential and exclusive therapeutic targets of the parasite to achieve selective inhibition. Enoyl-ACP reductase is an enzyme of the type II fatty acid biosynthetic pathway and is responsible for the rate-limiting step in the fatty acid elongation cycle. In this work, we use hierarchical virtual screening and drug repositioning strategies to prioritize compounds for phenotypic assays and molecular dynamics studies. The molecules were tested against chloroquine-resistant W2 strain of Plasmodium falciparum (EC between 330.05 and 13.92 µM). Nitrofurantoin was the best antimalarial activity at low micromolar range (EC = 13.92 µM). However, a hit compound against malaria must have a biological activity value below 1 µM. A large number of molecules present problems with permeability in biological membranes and reaching an effective concentration in their target's microenvironment. Nitrofurantoin derivatives with inclusions of groups which confer increased lipid solubility (methyl groups, halogens and substituted and unsubstituted aromatic rings) have been proposed. These derivatives were pulled through the lipid bilayer in molecular dynamics simulations. Molecules 14, 18 and 21 presented lower free energy values than nitrofurantoin when crossing the lipid bilayer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108093DOI Listing

Publication Analysis

Top Keywords

fatty acid
8
molecular dynamics
8
lipid bilayer
8
development antimalarial
4
antimalarial compounds
4
compounds silico
4
silico vitro
4
vitro assays
4
assays malaria
4
malaria widespread
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!