The ferroelectric photovoltaic effect (FPVE) enables alternate pathways for energy conversion that are not allowed in centrosymmetric materials. Understanding the dominant mechanism of the FPVE at the ultrathin limit is important for defining the ultimate efficiency. In contrast to the wide band gap conventional thin-film ferroelectrics, 2D α-InSe has an ideal band gap of 1.3 eV and enables the fabrication of ultrathin and stable heterostructures, providing the perfect platform to explore FPVE in the nanoscale limit. Here, we study the ferroelectric layer thickness-dependent FPVE in vertical few-layer graphene/α-InSe/graphene heterostructures. We find that the short-circuit photocurrent is antiparallel to the ferroelectric polarization and increases exponentially with decreasing thickness. We show that the observed behavior is predicted by the depolarization field model, originating from the unscreened bound charges due to the finite density of states in semimetal few-layer graphene. As a result, the heterostructures show enhancement of the power conversion efficiency, reaching 2.56 × 10% under 100 W/cm in 18 nm thick α-InSe, approximately 275 times more than the 50 nm thick α-InSe. These results demonstrate the importance of the depolarization field at the nanoscale and define design principles for the potential of harnessing FPVE at reduced dimension.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c11558DOI Listing

Publication Analysis

Top Keywords

graphene/α-inse/graphene heterostructures
8
band gap
8
depolarization field
8
thick α-inse
8
fpve
5
depolarization field-induced
4
field-induced photovoltaic
4
photovoltaic graphene/α-inse/graphene
4
heterostructures
4
heterostructures ferroelectric
4

Similar Publications

A possibility of unprecedented architecture may be opened up by combining both vertical and in-plane heterostructures. It is fascinating to discover that the interlayer stress transfer, interlayer binding energy, and interlayer shear stress of bi-layer Gr/hBN with CNTs heterostructures greatly increase (more than 2 times) with increase the numbers of CNTs and both saturate at the numbers of CNTs = 3, but it causes only 10.92% decrease in failure strain.

View Article and Find Full Text PDF

Atomic defects in solids offer a versatile basis to study and realize quantum phenomena and information science in various integrated systems. All-electrical pumping of single defects to create quantum light emission has been realized in several platforms including color centers in diamond and silicon carbide, which could lead to the circuit network of electrically triggered single-photon sources. However, a wide conduction channel which reduces the carrier injection per defect site has been a major obstacle.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

High-sensitivity, high-speed, broadband mid-infrared photodetector enabled by a van der Waals heterostructure with a vertical transport channel.

Nat Commun

January 2025

School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, and Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China.

The realization of room-temperature-operated, high-performance, miniaturized, low-power-consumption and Complementary Metal-Oxide-Semiconductor (CMOS)-compatible mid-infrared photodetectors is highly desirable for next-generation optoelectronic applications, but has thus far remained an outstanding challenge using conventional materials. Two-dimensional (2D) heterostructures provide an alternative path toward this goal, yet despite continued efforts, their performance has not matched that of low-temperature HgCdTe photodetectors. Here, we push the detectivity and response speed of a 2D heterostructure-based mid-infrared photodetector to be comparable to, and even superior to, commercial cooled HgCdTe photodetectors by utilizing a vertical transport channel (graphene/black phosphorus/molybdenum disulfide/graphene).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!