Wild boar trapping has been used as a management tool to control wild boar populations. However, it is increasingly criticized due to animal welfare concerns. While cortisol levels have been used to assess trap-related stress in wild boar, data on trap-related injuries and behavioral data are scarce. We aimed to evaluate three different corral-style traps for wild boar according to available mammal trapping standards to investigate and refine animal welfare in wild boar trapping. We examined 138 wild boars captured and killed by head shot in 27 capture events. Traps were closed by remote control only if the complete group were trapped. The behavior of the animals in the trap and during culling was recorded on video. All wild boars were examined and a pathological and radiological examination of the heads for trap- and shot-related injuries followed. Trap-related injuries occurred in 33% of the animals with superficial mild skin defects to skull fractures. One out of three traps met all the set requirements. A wire-meshed trapping system failed all. After installing an incomplete barrier in the center of the trap to slow down trapped animals, the fracture rate in one trap type was significantly reduced by 29% (p < 0.05). Our data showed that the type of trap (p = 0.007) and the number of animals trapped at once (p = 0.002) had a significant influence on the number of escape attempts. Trapping larger groups reduced the escape attempts. We emphasize the importance of an accurate pathological examination to evaluate animal welfare in traps and call for adjusting the injury categories listed in the standards and make a proposal for wild boar live trapping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11108160 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303458 | PLOS |
Viruses
December 2024
National Bio- and Agro-Defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, KS 66506, USA.
During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.
View Article and Find Full Text PDFViruses
December 2024
Federal Centre for Animal Health, 600901 Vladimir, Russia.
The lack of data on the whole-genome analysis of genotype II African swine fever virus (ASFV) isolates significantly hinders our understanding of its molecular evolution, and as a result, the range of single nucleotide polymorphisms (SNPs) necessary to describe a more accurate and complete scheme of its circulation. In this regard, this study aimed to identify unique SNPs, conduct phylogenetic analysis, and determine the level of homology of isolates obtained in the period from 2019 to 2022 in the central and eastern regions of Russia. Twenty-one whole-genome sequences of genotype II ASFV isolates were assembled, analyzed, and submitted to GenBank.
View Article and Find Full Text PDFViruses
December 2024
Friedrich-Loeffler-Institut Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
African swine fever (ASF) emerged in Germany in 2020. A few weeks after the initial occurrence, infected wild boar were detected in Saxony. In this study, data from wild boar surveillance in Saxony were analyzed.
View Article and Find Full Text PDFViruses
November 2024
Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
Hepatitis E virus (HEV) is a global health problem, causing an estimated 20 million infections annually. Thus, the management of HEV requires special consideration. In developed countries, hepatitis E is mainly recognized as a foodborne disease (mainly transmitted via undercooked meat consumption) that is generally caused by genotype 3 and 4 circulating in various animals, including pigs and wild boars.
View Article and Find Full Text PDFMicroorganisms
December 2024
Moredun Research Institute, Pentlands Science Park, Midlothian, Edinburgh EH26 0PZ, UK.
Sheep-associated malignant catarrhal fever (SA-MCF) is a severe lymphoproliferative vascular disease of cattle that is caused by ovine gammaherpesvirus 2 (OvGHV2), which is a within the subfamily. SA-MCF occurs worldwide in several mammalian hosts. Alternatively, alcelaphine gammaherpesvirus 1 (AlGHV1) is a that causes wildebeest-associated malignant catarrhal fever (MCF), which principally occurs in cattle from Africa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!