Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a novel method for predicting time-to-event data in the presence of cure fractions based on flexible survival models integrated into a deep neural network (DNN) framework. Our approach allows for nonlinear relationships and high-dimensional interactions between covariates and survival and is suitable for large-scale applications. To ensure the identifiability of the overall predictor formed of an additive decomposition of interpretable linear and nonlinear effects and potential higher-dimensional interactions captured through a DNN, we employ an orthogonalization layer. We demonstrate the usefulness and computational efficiency of our method via simulations and apply it to a large portfolio of U.S. mortgage loans. Here, we find not only a better predictive performance of our framework but also a more realistic picture of covariate effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2024.3398559 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!