Citrus canker, caused by subsp. (), is a severe citrus disease. Currently, copper-containing pesticides are widely used to manage this disease, posing high risks to the environment and human health. This study reports the discovery of naturally occurring anti- compounds from a deep-sea fungus, SCSIO 41202, and the possible mode of action. The ethyl acetate extract of was subjected to bioassay-guided isolation, resulting in the discovery of eight anti- compounds (-) with minimum inhibitory concentrations (MICs) ranging from 0.078 to 0.625 mg/mL. The chemical structures of these eight metabolites were determined by integrative analysis of various spectroscopic data. Among these compounds, Asperporonin A () and Asperporonin B () were identified as novel compounds with a very unusual structural skeleton. The electronic circular dichroism was used to determine the absolute configurations of and through quantum chemical calculation. A bioconversion pathway involving pinacol rearrangement was proposed to produce the unusual compounds (-). Compound exhibited an excellent anti- effect with a MIC value of 0.078 mg/mL, which was significantly more potent than the positive control CuSO (MIC = 0.3125 mg/mL). Compound inhibited cell growth by disrupting biofilm formation, destroying the cell membrane, and inducing the accumulation of reactive oxygen species. In vivo tests indicated that compound is highly effective in controlling citrus canker disease. These results indicate that compounds -, especially , have the potential as lead compounds for the development of new, environmentally friendly, and efficient anti- pesticides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c02769DOI Listing

Publication Analysis

Top Keywords

compounds
8
fungus scsio
8
scsio 41202
8
41202 mode
8
mode action
8
citrus canker
8
anti- compounds
8
discovery antibacterial
4
antibacterial compounds
4
compounds subsp
4

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).

View Article and Find Full Text PDF

Mechanisms and new advances in the efficacy of plant active ingredients in tendon-bone healing.

J Orthop Surg Res

January 2025

The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.

The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

The histone demethylase KDM5C enhances the sensitivity of acute myeloid leukemia cells to lenalidomide by stabilizing cereblon.

Cell Mol Biol Lett

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.

Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!