Machine Learning Models for Parkinson Disease: Systematic Review.

JMIR Med Inform

Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States.

Published: May 2024

Background: With the increasing availability of data, computing resources, and easier-to-use software libraries, machine learning (ML) is increasingly used in disease detection and prediction, including for Parkinson disease (PD). Despite the large number of studies published every year, very few ML systems have been adopted for real-world use. In particular, a lack of external validity may result in poor performance of these systems in clinical practice. Additional methodological issues in ML design and reporting can also hinder clinical adoption, even for applications that would benefit from such data-driven systems.

Objective: To sample the current ML practices in PD applications, we conducted a systematic review of studies published in 2020 and 2021 that used ML models to diagnose PD or track PD progression.

Methods: We conducted a systematic literature review in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines in PubMed between January 2020 and April 2021, using the following exact string: "Parkinson's" AND ("ML" OR "prediction" OR "classification" OR "detection" or "artificial intelligence" OR "AI"). The search resulted in 1085 publications. After a search query and review, we found 113 publications that used ML for the classification or regression-based prediction of PD or PD-related symptoms.

Results: Only 65.5% (74/113) of studies used a holdout test set to avoid potentially inflated accuracies, and approximately half (25/46, 54%) of the studies without a holdout test set did not state this as a potential concern. Surprisingly, 38.9% (44/113) of studies did not report on how or if models were tuned, and an additional 27.4% (31/113) used ad hoc model tuning, which is generally frowned upon in ML model optimization. Only 15% (17/113) of studies performed direct comparisons of results with other models, severely limiting the interpretation of results.

Conclusions: This review highlights the notable limitations of current ML systems and techniques that may contribute to a gap between reported performance in research and the real-life applicability of ML models aiming to detect and predict diseases such as PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112052PMC
http://dx.doi.org/10.2196/50117DOI Listing

Publication Analysis

Top Keywords

machine learning
8
parkinson disease
8
systematic review
8
studies published
8
conducted systematic
8
studies holdout
8
holdout test
8
test set
8
studies
6
models
5

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Polysomnography (PSG) is crucial for diagnosing sleep disorders, but manual scoring of PSG is time-consuming and subjective, leading to high variability. While machine-learning models have improved PSG scoring, their clinical use is hindered by the 'black-box' nature. In this study, we present SleepXViT, an automatic sleep staging system using Vision Transformer (ViT) that provides intuitive, consistent explanations by mimicking human 'visual scoring'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!