OLE (ornate, large, extremophilic) RNAs are members of a noncoding RNA class present in many Gram-positive, extremophilic bacteria. The large size, complex structure, and extensive sequence conservation of OLE RNAs are characteristics consistent with the hypothesis that they likely function as ribozymes. The OLE RNA representative from is known to localize to the phospholipid membrane and requires at least three essential protein partners: OapA, OapB, and OapC. However, the precise biochemical functions of this unusual ribonucleoprotein (RNP) complex remain unknown. Genetic disruption of OLE RNA or its partners revealed that the complex is beneficial under diverse stress conditions. To search for additional links between OLE RNA and other cellular components, we used phylogenetic profiling to identify proteins that are either correlated or anticorrelated with the presence of OLE RNA in various bacterial species. This analysis revealed strong correlations between the essential protein-binding partners of OLE RNA and organisms that carry the gene. Similarly, proteins involved in sporulation are correlated, suggesting a potential role for the OLE RNP complex in spore formation. Intriguingly, the Mg transporter MpfA is strongly anticorrelated with OLE RNA. Evidence indicates that MpfA is structurally related to OapA and therefore MpfA may serve as a functional replacement for some contributions otherwise performed by the OLE RNP complex in species that lack this device. Indeed, OLE RNAs might represent an ancient RNA class that enabled primitive organisms to sense and respond to major cellular stresses.IMPORTANCEOLE (ornate, large, extremophilic) RNAs were first reported nearly 20 years ago, and they represent one of the largest and most intricately folded noncoding RNA classes whose biochemical function remains to be established. Other RNAs with similar size, structural complexity, and extent of sequence conservation have proven to catalyze chemical transformations. Therefore, we speculate that OLE RNAs likewise operate as ribozymes and that they might catalyze a fundamental reaction that has persisted since the RNA World era-a time before the emergence of proteins in evolution. To seek additional clues regarding the function of OLE RNA, we undertook a computational effort to identify potential protein components of the OLE ribonucleoprotein (RNP) complex or other proteins that have functional links to this device. This analysis revealed known protein partners and several additional proteins that might be physically or functionally linked to the OLE RNP complex. Finally, we identified a Mg transporter protein, MpfA, that strongly anticorrelates with the OLE RNP complex. This latter result suggests that MpfA might perform at least some functions that are like those carried out by the OLE RNP complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332333 | PMC |
http://dx.doi.org/10.1128/msphere.00159-24 | DOI Listing |
JAMA Neurol
January 2025
Amyloidosis Research and Treatment Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.
Importance: There is a lack of long-term efficacy and safety data on hereditary transthyretin amyloidosis with polyneuropathy (hATTR-PN) and on RNA interference (RNAi) therapeutics in general. This study presents the longest-term data to date on patisiran for hATTR-PN.
Objective: To present the long-term efficacy and safety of patisiran in adults with hATTR-PN.
Microbiome
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
Background: Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics.
View Article and Find Full Text PDFCells
January 2025
Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes Vej5, 2200 Copenhagen, Denmark.
Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev, 2730, Denmark.
Background: Small Bowel Adenocarcinoma (SBA) is a rare gastrointestinal cancer with a limited understanding of the molecular pathology. This study aims to bridge the knowledge gap, providing a robust molecular foundation for SBA and addressing the clinical challenges inherent in treating this orphan disease. The study proposes to redefine the clinical management for SBA patients through advanced molecular profiling techniques to improve potential precision medicine.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Department of Biological and Chemical Engineering - Environmental Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark.
Aim: Aeromonas spp. are common members of water and wastewater microbiomes, but some are listed as opportunistic pathogens and are often reported to carry antimicrobial resistance (AMR) genes. We aimed to assess the performance of isolation media for capturing their distribution and their role in AMR dissemination into aquatic environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!