AI Article Synopsis

  • A novel method for controlling n-doping in organic semiconductors uses surface-functionalized gold nanoparticles (f-AuNPs) which only activate as a catalyst at mild temperatures (~70°C).
  • The study examined the reaction between the n-type dopant N-DMBI-H and various semiconductors, revealing that f-AuNPs are inactive at room temperature but enable rapid doping at elevated temperatures, achieving high electrical conductivities.
  • This approach enhances the development of n-doped films for applications in opto-electronic devices like transistors and solar cells, while also informing the design of new catalysts.

Article Abstract

A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that while f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~10-140 S cm). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions and will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202407273DOI Listing

Publication Analysis

Top Keywords

organic semiconductors
8
catalyst activation
8
on-demand catalysed
4
catalysed n-doping
4
n-doping organic
4
semiconductors approach
4
approach control
4
control n-doping
4
n-doping reaction
4
reaction organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!