Expanding horizons in reinforcement learning for curious exploration and creative planning.

Behav Brain Sci

Center for the Neurobiology of Learning and Memory, Qureshey, Research Laboratory, University of California, Irvine, CA,

Published: May 2024

Curiosity and creativity are expressions of the trade-off between leveraging that with which we are familiar or seeking out novelty. Through the computational lens of reinforcement learning, we describe how formulating the value of information seeking and generation via their complementary effects on formally captures a range of solutions to striking this balance.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0140525X23003394DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
8
expanding horizons
4
horizons reinforcement
4
learning curious
4
curious exploration
4
exploration creative
4
creative planning
4
planning curiosity
4
curiosity creativity
4
creativity expressions
4

Similar Publications

Expanding the brain's terrain for reward.

Science

January 2025

Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

A previously unknown region in the brainstem controls dopamine activity.

View Article and Find Full Text PDF

Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.

View Article and Find Full Text PDF

The recent COVID-19 pandemic offers a rare opportunity to understand how citizens attribute responsibility for governments' responses to unanticipated negative-and in this case, systemic-exogenous shocks. Classical accounts of responsibility are complicated when crises are pervasive, involve multiple valence dimensions, and where individuals can make relative assessments of performance. We fielded a conjoint experiment in 16 countries with 22,147 respondents.

View Article and Find Full Text PDF

The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).

View Article and Find Full Text PDF

3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!