Laser-induced graphene-based digital microfluidics (gDMF): a versatile platform with sub-one-dollar cost.

Lab Chip

Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.

Published: June 2024

AI Article Synopsis

  • Digital microfluidics (DMF) has potential in biomedical applications but traditional chip production is complicated, time-consuming, and expensive, limiting its use in point-of-care testing (POCT).
  • A newly developed laser-induced graphene (LIG) based digital microfluidics chip (gDMF) can be manufactured quickly (in under 10 minutes) and at a low cost (below $1), making it a cost-effective alternative.
  • The gDMF allows for both planar and vertical addressing configurations, achieving high electrode density and comparable performance to conventional DMF devices, thus presenting a versatile platform for POCT.

Article Abstract

Digital microfluidics (DMF), is an emerging liquid-handling technology, that shows promising potential in various biological and biomedical applications. However, the fabrication of conventional DMF chips is usually complicated, time-consuming, and costly, which seriously limits their widespread applications, especially in the field of point-of-care testing (POCT). Although the paper- or film-based DMF devices can offer an inexpensive and convenient alternative, they still suffer from the planar addressing structure, and thus, limited electrode quantity. To address the above issues, we herein describe the development of a laser-induced graphene (LIG) based digital microfluidics chip (gDMF). It can be easily made (within 10 min, under ambient conditions, without the need of costly materials or cleanroom-based techniques) by a computer-controlled laser scribing process. Moreover, both the planar addressing DMF (pgDMF) and vertical addressing DMF (vgDMF) can be readily achieved, with the latter offering the potential of a higher electrode density. Also, both of them have an impressively low cost of below $1 ($0.85 for pgDMF, $0.59 for vgDMF). Experiments also show that both pgDMF and vgDMF have a comparable performance to conventional DMF devices, with a colorimetric assay performed on vgDMF as proof-of-concept to demonstrate their applicability. Given the simple fabrication, low cost, full function, and the ease of modifying the electrode pattern for various applications, it is reasonably expect that the proposed gDMF may offer an alternative choice as a versatile platform for POCT.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4lc00258jDOI Listing

Publication Analysis

Top Keywords

digital microfluidics
12
versatile platform
8
conventional dmf
8
dmf devices
8
planar addressing
8
addressing dmf
8
low cost
8
dmf
6
laser-induced graphene-based
4
graphene-based digital
4

Similar Publications

Portable sensor technologies are indispensable in personalized healthcare and environmental monitoring as they enable the continuous tracking of key analytes. Human sweat contains valuable physiological information, and previously developed noninvasive sweat-based sensors have effectively monitored single or multiple biomarkers. By successfully detecting biochemicals in sweat, portable sensors could also significantly broaden their application scope, encompassing non-biological fluids commonly encountered in daily life, such as mineral water.

View Article and Find Full Text PDF

Carnivory in plants is an unusual trait that has arisen multiple times, independently, throughout evolutionary history. Plants in the genus are carnivorous and feed on microorganisms that live in soil using modified subterranean leaf structures (rhizophylls). A surprisingly broad array of microfauna has been observed in the plants' digestive chambers, including ciliates, amoebae, and soil mites.

View Article and Find Full Text PDF

Digital PCR (dPCR) has transformed nucleic acid diagnostics by enabling the absolute quantification of rare mutations and target sequences. However, traditional dPCR detection methods, such as those involving flow cytometry and fluorescence imaging, may face challenges due to high costs, complexity, limited accuracy, and slow processing speeds. In this study, SAM-dPCR is introduced, a training-free open-source bioanalysis paradigm that offers swift and precise absolute quantification of biological samples.

View Article and Find Full Text PDF

Design, additive manufacturing, and characterization of an organ-on-chip microfluidic device for oral mucosa analogue growth.

J Mech Behav Biomed Mater

December 2024

Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. Electronic address:

Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).

Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.

View Article and Find Full Text PDF

Tunable Picoliter-Scale Dropicle Formation Using Amphiphilic Microparticles with Patterned Hydrophilic Patches.

Adv Sci (Weinh)

December 2024

Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany.

Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!