This study explores a spatially distributed harvesting model that signifies the outcome of the competition of two species in a heterogeneous environment. The model is controlled by reaction-diffusion equations with resource-based diffusion strategies. Two different situations are maintained by the harvesting effects: when the harvesting rates are independent in space and do not exceed the intrinsic growth rate; and when they are proportional to the time-independent intrinsic growth rate. In particular, the competition between both species differs only by their corresponding migration strategy and harvesting intensity. We have computed the main results for the global existence of solutions that represent either coexistence or competitive exclusion of two competing species depending on the harvesting levels and different imposed diffusion strategies. We also established some estimates on harvesting efforts for which coexistence is apparent. Also, some numerical results are exhibited in one and two spatial dimensions, which shed some light on the ecological implementation of the model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103478PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e30737DOI Listing

Publication Analysis

Top Keywords

competition species
8
diffusion strategies
8
intrinsic growth
8
growth rate
8
harvesting
7
evolution dispersal
4
dispersal analysis
4
analysis resource
4
resource flourished
4
flourished population
4

Similar Publications

Sequence-based machine-learning models trained on genomics data improve genetic variant interpretation by providing functional predictions describing their impact on the cis-regulatory code. However, current tools do not predict RNA-seq expression profiles because of modeling challenges. Here, we introduce Borzoi, a model that learns to predict cell-type-specific and tissue-specific RNA-seq coverage from DNA sequence.

View Article and Find Full Text PDF

Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).

View Article and Find Full Text PDF

Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar performance, and their use depends on time-consuming parameter adjustments.

View Article and Find Full Text PDF

In cannibalistic species, conspecifics can be both predators and prey. As a result, conspecifics present a unique conflict at the intersection of predation, competition and nutritional resources in these species. To better understand how individuals respond to the complex information of conspecific chemical cues, we studied aggressive and cannibalistic tadpoles of the dyeing poison frog, .

View Article and Find Full Text PDF

Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa.

Biochem J

January 2025

Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!