Although glutamine addiction in cancer cells is extensively reported, there is controversy on the impact of glutamine metabolism on the immune cells within the tumor microenvironment (TME). To address the role of extracellular glutamine, we enzymatically depleted circulating glutamine using PEGylated gamma-glutamyl transferase (PEG-GGT) in syngeneic mouse models of breast and colon cancers. PEG-GGT treatment inhibits growth of cancer cells , but it increases myeloid-derived suppressor cells (MDSCs) and has no significant impact on tumor growth. By deriving a glutamine depletion signature, we analyze diverse human cancers within the TCGA and illustrate that glutamine depletion is not associated with favorable clinical outcomes and correlates with accumulation of MDSC. Broadly, our results help clarify the integrated impact of glutamine depletion within the TME and advance PEG-GGT as an enzymatic tool for the systemic and selective depletion (no asparaginase activity) of circulating glutamine in live animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103382 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.109817 | DOI Listing |
Front Mol Biosci
January 2025
Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.
Background: Prostate cancer (PCa), the most prevalent malignant neoplasm in males, involves complex biological mechanisms and risk factors, many of which remain unidentified. By employing a novel two-sample Mendelian randomization (MR) approach, this study aims to elucidate the causal relationships between the circulating metabolome and PCa risk, utilizing comprehensive data on genetically determined plasma metabolites and metabolite ratios.
Methods: For the MR analysis, we utilized data from the GWAS Catalog database to analyze 1,091 plasma metabolites and 309 ratios in relation to PCa outcomes within two independent GWAS datasets.
Diabetes Obes Metab
January 2025
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
Background: Medications targeting the leptin and Apolipoprotein CIII (APOC3) pathways are currently under development for the treatment of hypertriglyceridaemia. Given that both pathways are implicated in triglyceride regulation, it is unknown whether they function independently or interact under physiological conditions and under acute or long-term energy deficiency.
Methods: APOC3 levels and their association with circulating lipids and lipoproteins were evaluated in the context of two randomised controlled studies.
J Pharm Biomed Anal
December 2024
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China. Electronic address:
Myocardial infarction (MI) is a major cause of death worldwide. Exercise rehabilitation (ER) is a powerful tool to improve life quality and prognosis of MI patients. Herein, we developed an untargeted metabolomics combined with lipidomics method to qualitatively and quantitatively detect metabolites in plasma.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
Curr Issues Mol Biol
December 2024
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China.
Epilepsy is a neurological disorder characterized by recurrent, unprovoked seizures. Currently, the associations among skin microbiota, circulating metabolites, and epilepsy are still not well studied. In this study, we applied univariate and two-step Mendelian randomization analysis using single nucleotide polymorphisms as instrumental variables to analyze the possible associations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!