Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×10 M at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202400292 | DOI Listing |
Chem Sci
January 2025
Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
In this study, we theoretically examined the mechanism of aromaticity induced in closely stacked cofacial π-dimers of 4π antiaromatic molecules, which is called stacked-ring aromaticity, in terms of the effective number of π-electrons ( ) and Baird's rule. High-precision quantum chemical calculations combined with a multi-configurational wavefunction analysis revealed that double-triplet [(TT)] and intermolecular charge-transfer (CT) electron configurations mix substantially in the ground state wavefunctions of cyclobutadiene and Ni(ii) norcorrole dimer models at small stacking distance (). Since the T configuration gives rise to two unpaired electrons, the remaining 4 - 2 π electrons still participate in the intramolecular conjugation, which can be interpreted as the origin of the aromaticity of each monomer.
View Article and Find Full Text PDFChemistry
July 2024
Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan.
Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2024
Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
Nuclear magnetic resonance (NMR) shielding constants have been calculated for Ni(II) bis(pentafluorophenyl)norcorrole and its face-to-face stacked dimer at the Hartree-Fock (HF), second-order Møller-Plesset perturbation theory (MP2), complete-active-space self-consistent-field (CASSCF) levels as well as at density functional theory (DFT) levels using several functionals. The calculated H NMR shielding constants agree rather well with the experimental ones. The shielding constants of N and Ni calculated at DFT, HF, and MP2 levels differ from those obtained in the CASSCF calculations due to near-degeneracy effects at the Ni atom.
View Article and Find Full Text PDFJ Am Chem Soc
April 2024
Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons.
View Article and Find Full Text PDFEuropean J Org Chem
May 2021
Aromaticity is a central concept in chemistry, pervading areas from biochemistry to materials science. Recently, chemists also started to exploit intricate phenomena such as the interplay of local and global (anti)aromaticity or aromaticity in non-planar systems and three dimensions. These phenomena pose new challenges in terms of our fundamental understanding and the practical visualisation of aromaticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!