Homochiral and Heterochiral Self-Sorting Assemblies of Antiaromatic Ni(II) Norcorrole Dimers.

Chemistry

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan.

Published: July 2024

Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×10 M at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202400292DOI Listing

Publication Analysis

Top Keywords

norcorrole dimers
12
antiaromatic π-systems
8
chiral self-sorting
8
homochiral self-sorting
8
supramolecular assemblies
8
self-sorting
5
antiaromatic
5
homochiral heterochiral
4
heterochiral self-sorting
4
self-sorting assemblies
4

Similar Publications

In this study, we theoretically examined the mechanism of aromaticity induced in closely stacked cofacial π-dimers of 4π antiaromatic molecules, which is called stacked-ring aromaticity, in terms of the effective number of π-electrons ( ) and Baird's rule. High-precision quantum chemical calculations combined with a multi-configurational wavefunction analysis revealed that double-triplet [(TT)] and intermolecular charge-transfer (CT) electron configurations mix substantially in the ground state wavefunctions of cyclobutadiene and Ni(ii) norcorrole dimer models at small stacking distance (). Since the T configuration gives rise to two unpaired electrons, the remaining 4 - 2 π electrons still participate in the intramolecular conjugation, which can be interpreted as the origin of the aromaticity of each monomer.

View Article and Find Full Text PDF

Homochiral and Heterochiral Self-Sorting Assemblies of Antiaromatic Ni(II) Norcorrole Dimers.

Chemistry

July 2024

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan.

Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting.

View Article and Find Full Text PDF

Changing aromatic properties through stacking: the face-to-face dimer of Ni(II) bis(pentafluorophenyl)norcorrole.

Phys Chem Chem Phys

May 2024

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.

Nuclear magnetic resonance (NMR) shielding constants have been calculated for Ni(II) bis(pentafluorophenyl)norcorrole and its face-to-face stacked dimer at the Hartree-Fock (HF), second-order Møller-Plesset perturbation theory (MP2), complete-active-space self-consistent-field (CASSCF) levels as well as at density functional theory (DFT) levels using several functionals. The calculated H NMR shielding constants agree rather well with the experimental ones. The shielding constants of N and Ni calculated at DFT, HF, and MP2 levels differ from those obtained in the CASSCF calculations due to near-degeneracy effects at the Ni atom.

View Article and Find Full Text PDF

Close Stacking of Antiaromatic Ni(II) Norcorrole Originating from a Four-Electron Multicentered Bonding Interaction.

J Am Chem Soc

April 2024

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.

A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons.

View Article and Find Full Text PDF

Aromaticity is a central concept in chemistry, pervading areas from biochemistry to materials science. Recently, chemists also started to exploit intricate phenomena such as the interplay of local and global (anti)aromaticity or aromaticity in non-planar systems and three dimensions. These phenomena pose new challenges in terms of our fundamental understanding and the practical visualisation of aromaticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!