Background: Miscarriage is a frustrating complication of pregnancy that is common among women of reproductive age. Insufficient decidualization which not only impairs embryo implantation but disturbs fetomaternal immune-tolerance, has been widely regarded as a major cause of miscarriage; however, the underlying mechanisms resulting in decidual impairment are largely unknown.

Methods: With informed consent, decidual tissue from patients with spontaneous abortion or normal pregnant women was collected to detect the expression profile of UCHL1. Human endometrial stromal cells (HESCs) were used to explore the roles of UCHL1 in decidualization and dNK modulation, as well as the mechanisms involved. C57/BL6 female mice (7-10 weeks old) were used to construct pregnancy model or artificially induced decidualization model to evaluate the effect of UCHL1 on mice decidualization and pregnancy outcome.

Results: The Ubiquitin C-terminal hydrolase L1 (UCHL1), as a deubiquitinating enzyme, was significantly downregulated in decidua from patients with miscarriage, along with impaired decidualization and decreased dNKs. Blockage of UCHL1 led to insufficient decidualization and resultant decreased expression of cytokines CXCL12, IL-15, TGF-β which were critical for generation of decidual NK cells (dNKs), whereas UCHL1 overexpression enhanced decidualization accompanied by increase in dNKs. Mechanistically, the promotion of UCHL1 on decidualization was dependent on its deubiquitinating activity, and intervention of UCHL1 inhibited the activation of JAK2/STAT3 signaling pathway, resulting in aberrant decidualization and decreased production of cytokines associated with dNKs modulation. Furthermore, we found that inhibition of UCHL1 also disrupted the decidualization in mice and eventually caused adverse pregnancy outcome.

Conclusions: UCHL1 plays significant roles in decidualization and dNKs modulation during pregnancy in both humans and mice. Its deficiency indicates a poor pregnancy outcome due to defective decidualization, making UCHL1 a potential target for the diagnosis and treatment of miscarriage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103838PMC
http://dx.doi.org/10.1186/s12967-024-05253-0DOI Listing

Publication Analysis

Top Keywords

decidualization
13
insufficient decidualization
12
uchl1
11
decidualization accompanied
8
dnk modulation
8
uchl1 decidualization
8
decidualization decreased
8
dnks modulation
8
pregnancy
6
miscarriage
5

Similar Publications

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Background: Preimplantation embryos in vivo are exposed to various growth factors in the female reproductive tract that are absent in in vitro embryo culture media. Cell-free fat extract exerts antioxidant, anti-ageing, and ovarian function-promoting effects. However, its effects on embryo quality are yet to be investigated.

View Article and Find Full Text PDF

Reduced expression of programmed cell death protein 1 on peripheral regulatory B cells in pre-eclampsia - Signs of impaired immune suppression.

J Reprod Immunol

January 2025

Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Sygehusvej 10, Roskilde DK-4000, Denmark. Electronic address:

Immunological changes are believed to be a part of pre-eclampsia etiology. This study investigated the distribution of the specific peripheral B lymphocyte phenotypes in pre-eclampsia cases compared to uncomplicated pregnancies. The study cohort included 29 women with pre-eclampsia and 14 women with uncomplicated pregnancies.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the placenta can lead to fetal distress and demise, characterized by severe trophoblast necrosis, chronic histiocytic intervillositis (CHI), and massive perivillous fibrin deposition. We aimed to uncover spatial immune-related protein changes in SARS-CoV-2 placentitis compared with CHI placentas and uncomplicated pregnancies to gain insight into the underlying pathophysiological mechanisms. Placentas were retrospectively collected from cases with SARS-CoV-2 placentitis resulting in fetal distress/demise (n = 9), CHI (n = 9), and uncomplicated term controls (n = 9).

View Article and Find Full Text PDF

The BMP Signaling Pathway: Bridging Maternal-Fetal Crosstalk in Early Pregnancy.

Reprod Sci

January 2025

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.

The maintenance of early pregnancy is a complex and distinctive process, primarily characterized by critical reproductive events such as embryo implantation, trophoblasts differentiation, decidualization, and extravillous trophoblasts (EVTs) invasion etc. However, dysregulation of these essential reproductive processes can result in various pregnancy complications, including recurrent miscarriage, preeclampsia, and fetal growth restriction etc. Notably, these complications exhibit an interconnected regulatory network that suggests shared underlying pathophysiological mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!