The construction of synthetic gene circuits in plants has been limited by a lack of orthogonal and modular parts. Here, we implement a CRISPR (clustered regularly interspaced short palindromic repeats) interference (CRISPRi)-based reversible gene circuit platform in plants. We create a toolkit of engineered repressible promoters of different strengths and construct NOT and NOR gates in Arabidopsis thaliana protoplasts. We determine the optimal processing system to express single guide RNAs from RNA Pol II promoters to introduce NOR gate programmability for interfacing with host regulatory sequences. The performance of a NOR gate in stably transformed Arabidopsis plants demonstrates the system's programmability and reversibility in a complex multicellular organism. Furthermore, cross-species activity of CRISPRi-based logic gates is shown in Physcomitrium patens, Triticum aestivum and Brassica napus protoplasts. Layering multiple NOR gates together creates OR, NIMPLY and AND logic functions, highlighting the modularity of our system. Our CRISPRi circuits are orthogonal, compact, reversible, programmable and modular and provide a platform for sophisticated spatiotemporal control of gene expression in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41587-024-02236-w | DOI Listing |
Front Vet Sci
December 2024
College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China.
The aim of this study was to investigate the impact of supplementary feeding with Chinese herbal mixtures on perinatal sows, focusing on their reproductive performance, immunity and breast milk quality. Sixty healthy pregnant sows (Large white, 4 parities) were randomly allocated into five treatment groups ( = 12 per group): the control group received a basal diet, the TRT1 group received a basal diet supplemented with 2 kg/t Bazhen powder (BZP), while the TRT2, TRT3, and TRT4 groups received a basal diet supplemented with 1 kg/t, 2 kg/t, and 3 kg/t Qi-Zhu-Gui-Shao soothing liver and replenishing blood powder (QZGSP), respectively. The trial lasted for a duration of 5 weeks, commencing from day 100 of gestation and concluding on day 21 postpartum.
View Article and Find Full Text PDFClinical, neuroimaging and genomics evidence have increasingly underscored a degree of overlap between autism and attention-deficit/hyperactivity disorder (ADHD). This study explores the specific contribution of their core symptoms to shared biology in a sample of N=166 verbal children (6-12 years) with rigorously-established primary diagnoses of either autism or ADHD (without autism). We investigated the associations between inter-individual differences in clinician-based dimensional measures of autism and ADHD symptoms and whole-brain low motion intrinsic functional connectivity (iFC).
View Article and Find Full Text PDFNon-syndromic orofacial clefts (NSOC) are common craniofacial birth defects, and result from both genetic and environmental factors. NSOC include three major sub-phenotypes: non-syndromic cleft lip with palate (NSCLP), non-syndromic cleft lip only (NSCLO) and non-syndromic cleft palate only (NSCPO), NSCLP and NSCLO are also sometimes grouped as non-syndromic cleft lip with or without cleft palate (NSCL/P) based on epidemiology. Currently known loci only explain a limited proportion of the heritability of NSOC.
View Article and Find Full Text PDFCrohn's disease (CD) is a complex inflammatory bowel disease resulting from an interplay of genetic, microbial, and environmental factors. Cell-type-specific contributions to CD etiology and genetic risk are incompletely understood. Here we built a comprehensive atlas of cell-type- resolved chromatin accessibility comprising 557,310 candidate cis-regulatory elements (cCREs) in terminal ileum and ascending colon from patients with active and inactive CD and healthy controls.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
The present study has evaluated different soybean genotypes to understand the salt and drought tolerance mechanisms based on physiological traits (photosynthesis, stomatal conductance, chlorophyll, and cell membrane stability), antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), reactive oxygen species (HO and O ), osmolytes (glycine betaine, proline, and Na/K), plant water relations (relative water content, water potential, and solute potential) and expression of related genes (, , , , , , , and ). The experiment was conducted in a two-factorial arrangement using randomized complete block design (RCBD) with genotypes as one factor and salt, drought, and control treatments as the other factor. All physiological traits, relative water content, and water potential decreased significantly in all soybean genotypes due to individual and combined treatments of drought and salt stress, with significantly less decrease in soybean genotypes G4620RX, DM45X61, and NARC-21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!