Solid-state spin-photon interfaces that combine single-photon generation and long-lived spin coherence with scalable device integration-ideally under ambient conditions-hold great promise for the implementation of quantum networks and sensors. Despite rapid progress reported across several candidate systems, those possessing quantum coherent single spins at room temperature remain extremely rare. Here we report quantum coherent control under ambient conditions of a single-photon-emitting defect spin in a layered van der Waals material, namely, hexagonal boron nitride. We identify that the carbon-related defect has a spin-triplet electronic ground-state manifold. We demonstrate that the spin coherence is predominantly governed by coupling to only a few proximal nuclei and is prolonged by decoupling protocols. Our results serve to introduce a new platform to realize a room-temperature spin qubit coupled to a multiqubit quantum register or quantum sensor with nanoscale sample proximity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442369 | PMC |
http://dx.doi.org/10.1038/s41563-024-01887-z | DOI Listing |
Nat Mater
January 2025
School of Physics and Astronomy, Beijing Normal University, Beijing, China.
The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria.
Sci Adv
January 2025
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Phys Rev Lett
December 2024
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Inria Paris, Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France.
Given some group G of logical gates, for instance the Clifford group, what are the quantum encodings for which these logical gates can be implemented by simple physical operations, described by some physical representation of G? We study this question by constructing a general form of such encoding maps. For instance, we recover that the ⟦5,1,3⟧ and Steane codes admit transversal implementations of the binary tetrahedral and binary octahedral groups, respectively. For bosonic encodings, we show how to obtain the GKP and cat qudit encodings by considering the appropriate groups, and essentially the simplest physical implementations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!