Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Researchers have developed machine learning-based ECG diagnostic algorithms that match or even surpass cardiologist level of performance. However, most of them cannot be used in real-world, as older generation ECG machines do not permit installation of new algorithms.
Objective: To develop a smartphone application that automatically extract ECG waveforms from photos and to convert them to voltage-time series for downstream analysis by a variety of diagnostic algorithms built by researchers.
Methods: A novel approach of using objective detection and image segmentation models to automatically extract ECG waveforms from photos taken by clinicians was devised. Modular machine learning models were developed to sequentially perform waveform identification, gridline removal, and scale calibration. The extracted data were then analysed using a machine learning-based cardiac rhythm classifier.
Results: Waveforms from 40 516 scanned and 444 photographed ECGs were automatically extracted. 12 828 of 13 258 (96.8%) scanned and 5399 of 5743 (94.0%) photographed waveforms were correctly cropped and labelled. 11 604 of 12 735 (91.1%) scanned and 5062 of 5752 (88.0%) photographed waveforms achieved successful voltage-time signal extraction after automatic gridline and background noise removal. In a proof-of-concept demonstration, an atrial fibrillation diagnostic algorithm achieved 91.3% sensitivity, 94.2% specificity, 95.6% positive predictive value, 88.6% negative predictive value and 93.4% F1 score, using photos of ECGs as input.
Conclusion: Object detection and image segmentation models allow automatic extraction of ECG signals from photos for downstream diagnostics. This novel pipeline circumvents the need for costly ECG hardware upgrades, thereby paving the way for large-scale implementation of machine learning-based diagnostic algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/heartjnl-2023-323822 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!