An exploratory study on the ability of manganese to supplement rotenone neurotoxicity in rats.

Brain Res

Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur No. 3877, Col. La Fama, Tlalpan, C.P. 14269 Ciudad de México, Mexico; Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez - Sección XVI, Tlalpan, C.P. 14080 Ciudad de México, Mexico. Electronic address:

Published: September 2024

Parkinson's disease (PD) is a complex disorder, primarily of idiopathic origin, with environmental stressors like rotenone and manganese linked to its development. This study explores their potential interaction and resulting neurotoxicity, aiming to understand how environmental factors contribute to PD. In an eight-day experiment, male Wistar rats weighing 280-300 g were subjected to rotenone, manganese, or a combination of both. Various parameters were assessed, including body weight, behavior, serum markers, tissue damage, protein levels (tyrosine hydroxylase, Dopamine- and cAMP-regulated neuronal phosphoprotein -DARPP-32-, and α-synuclein), and mitochondrial function. Manganese heightened rotenone's impact on reducing food intake without causing kidney or liver dysfunction. However, the combined exposure intensified neurotoxicity, which was evident in augmented broken nuclei and decreased tyrosine hydroxylase and DARPP-32 levels in the striatum. While overall mitochondrial function was preserved, co-administration reduced complex IV activity in the midbrain and liver. In conclusion, our findings revealed a parallel toxic effect induced by rotenone and manganese. Notably, while these substances do not target the same dopaminergic regions, a notable escalation in toxicity is evident in the striatum, the brain region where their toxic effects converge. This study highlights the need for further exploration regarding the interaction of environmental factors and their possible impact on the etiology of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2024.149017DOI Listing

Publication Analysis

Top Keywords

rotenone manganese
12
environmental factors
8
tyrosine hydroxylase
8
mitochondrial function
8
manganese
5
exploratory study
4
study ability
4
ability manganese
4
manganese supplement
4
rotenone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!