A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Risk prediction models of depression in older adults with chronic diseases. | LitMetric

Risk prediction models of depression in older adults with chronic diseases.

J Affect Disord

School of Health Management, Bengbu Medical University, Bengbu, China. Electronic address:

Published: August 2024

Background: Detecting potential depression and identifying the critical predictors of depression among older adults with chronic diseases are essential for timely intervention and management of depression. Therefore, risk prediction models (RPMs) of depression in elderly people should be further explored.

Methods: A total of 3959 respondents aged 60 years or over from the wave four survey of the China Health and Retired Longitudinal Study (CHARLS) were included in this study. We used five machine learning (ML) algorithms and three data balancing techniques to construct RPMs of depression and calculated feature importance scores to determine which features are essential to depression.

Results: The prevalence of depression was 19.2 % among older Chinese adults with chronic diseases in the wave four survey. The random forest (RF) model was more accurate than the other models after balancing the data using the Synthetic Minority Oversampling Technique (SMOTE) algorithm, with an area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) of 0.957 and 0.920, respectively, a balanced accuracy of 0.891 and a sensitivity of 0.875. Furthermore, we further identified several important predictors between male and female patients via constructed sex-stratified models.

Limitations: Further research on the clinical impact studies of our models and external validation are needed.

Conclusions: After several techniques were used to address class imbalance issues, most RPMs achieved satisfactory accuracy in predicting depression among elderly people with chronic diseases. RPMs may thus become valuable screening tools for both older individuals and healthcare practitioners to assess the risk of depression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2024.05.078DOI Listing

Publication Analysis

Top Keywords

chronic diseases
16
adults chronic
12
depression
9
risk prediction
8
prediction models
8
depression older
8
older adults
8
rpms depression
8
depression elderly
8
elderly people
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!