A review on mathematical modeling of microbial and plant induced permafrost carbon feedback.

Sci Total Environ

Sustainable Infrastructure and Geoengineering Lab (SIGLab), Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, QC, Canada. Electronic address:

Published: August 2024

This review paper analyses the significance of microbial activity in permafrost carbon feedback (PCF) and emphasizes the necessity for enhanced modeling tools to appropriately predict carbon fluxes associated with permafrost thaw. Beginning with an overview of experimental findings, both in situ and laboratory, it stresses the key role of microbes and plants in PCF. The research investigates several modeling techniques, starting with current models of soil respiration and plant-microorganism interactions built outside of the context of permafrost, and then moving on to specific models dedicated to PCF. The review of the current literature reveals the complex nature of permafrost ecosystems, where various geophysical factors have considerable effects on greenhouse gas emissions. Soil properties, plant types, and time scales all contribute to carbon dynamics. Process-based models are widely used for simulating greenhouse gas production, transport, and emissions. While these models are beneficial at capturing soil respiration complexity, adjusting them to the unique constraints of permafrost environments often calls for novel process descriptions for proper representation. Understanding the temporal coherence and time delays between surface soil respiration and subsurface carbon production, which are controlled by numerous parameters such as soil texture, water content, and temperature, remains a challenge. This review highlights the need for comprehensive models that integrate thermo-hydro-biogeochemical processes to understand permafrost system dynamics in the context of changing climatic circumstances. Furthermore, it emphasizes the need for rigorous validation procedures to reduce model complexity biases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173144DOI Listing

Publication Analysis

Top Keywords

soil respiration
12
permafrost carbon
8
carbon feedback
8
greenhouse gas
8
permafrost
7
carbon
5
models
5
soil
5
review
4
review mathematical
4

Similar Publications

This study investigates the seasonal and diurnal variations of soil CO flux (Fc) and the impact of meteorological variables on its dynamics. The study took place in the subtropical forest ecosystem of Kaziranga National Park (KNP), from November 2019 to March 2020. The highest Fc (6.

View Article and Find Full Text PDF

Heat and drought events are increasing in frequency and intensity, posing significant risks to natural and agricultural ecosystems with uncertain effects on the net ecosystem CO exchange (NEE). The current Vegetation Photosynthesis and Respiration Model (VPRM) was adjusted to include soil moisture impacts on the gross ecosystem exchange (GEE) and respiration ( ) fluxes to assess the temporal variability of NEE over south-western Europe for 2001-2022. Warming temperatures lengthen growing seasons, causing an increase in GEE, which is mostly compensated by a similar increment in .

View Article and Find Full Text PDF

Polymer-based herbicide nanocarriers have shown potential for increasing the herbicide efficacy and environmental safety. This study aimed to develop, characterize, and evaluate toxicity to target and nontarget organisms of natural-based polymeric nanosystems for glyphosate. Polymers such as chitosan (CS), zein (ZN), and lignin (LG) were used in the synthesis.

View Article and Find Full Text PDF

Sub-zero soil CO respiration in biostimulated hydrocarbon-contaminated cold-climate soil can be linked to the soil-freezing characteristic curve.

Environ Sci Pollut Res Int

January 2025

Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Engineering Building, Saskatoon, SK, S7N 5A9, Canada.

Extending unfrozen water availability is critical for stress-tolerant bioremediation of contaminated soils in cold climates. This study employs the soil-freezing characteristic curves (SFCCs) of biostimulated, hydrocarbon-contaminated cold-climate soils to efficiently address the coupled effects of unfrozen water retention and freezing soil temperature on sub-zero soil respiration activity. Freezing-induced soil respiration experiments were conducted under the site-relevant freezing regime, programmed from 4 to - 10 °C at a seasonal soil-freezing rate of - 1 °C/day.

View Article and Find Full Text PDF

Large emissions of CO and CH due to active-layer warming in Arctic tundra.

Nat Commun

January 2025

Climate and Ecosystem Sciences Division, Berkeley Lab, Berkeley, CA, USA.

Climate warming may accelerate decomposition of Arctic soil carbon, but few controlled experiments have manipulated the entire active layer. To determine surface-atmosphere fluxes of carbon dioxide and methane under anticipated end-of-century warming, here we used heating rods to warm (by 3.8 °C) to the depth of permafrost in polygonal tundra in Utqiaġvik (formerly Barrow), Alaska and measured fluxes over two growing seasons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!