KIN10-mediated HB16 protein phosphorylation and self-association improve cassava disease resistance by transcriptional activation of lignin biosynthesis genes.

Plant Biotechnol J

National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan province, China.

Published: October 2024

Cassava bacterial blight significantly affects cassava yield worldwide, while major cassava cultivars are susceptible to this disease. Therefore, it is crucial to identify cassava disease resistance gene networks and defence molecules for the genetic improvement of cassava cultivars. In this study, we found that MeHB16 transcription factor as a differentially expressed gene in cassava cultivars with contrasting disease resistance, positively modulated disease resistance by modulating defence molecule lignin accumulation. Further investigation showed that MeHB16 physically interacted with itself via the leucine-Zippe domain (L-Zip), which was necessary for the transcriptional activation of downstream lignin biosynthesis genes. In addition, protein kinase MeKIN10 directly interacted with MeHB16 to promote its phosphorylation at Ser6, which in turn enhanced MeHB16 self-association and downstream lignin biosynthesis. In summary, this study revealed the molecular network of MeKIN10-mediated MeHB16 protein phosphorylation improved cassava bacterial blight resistance by fine-tuning lignin biosynthesis and provides candidate genes and the defence molecule for improving cassava disease resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536500PMC
http://dx.doi.org/10.1111/pbi.14386DOI Listing

Publication Analysis

Top Keywords

disease resistance
20
lignin biosynthesis
16
cassava disease
12
cassava cultivars
12
cassava
9
protein phosphorylation
8
transcriptional activation
8
biosynthesis genes
8
cassava bacterial
8
bacterial blight
8

Similar Publications

Context: Sarcopenia is a disease characterized by low muscle mass and function that places individuals at greater risk of disability, loss of independence, and death. Current therapies include addressing underlying performance issues, resistance training, and/or nutritional strategies. However, these approaches have significant limitations, and chronic inflammation associated with sarcopenia may blunt the anabolic response to exercise and nutrition.

View Article and Find Full Text PDF

Evolution of gene expression frequently drives antibiotic resistance in bacteria. We had previously (Patel and Matange, , 2021) shown that, in , mutations at the locus were beneficial under trimethoprim exposure and led to overexpression of dihydrofolate reductase (DHFR), encoded by the gene. Here, we show that DHFR levels are further enhanced by spontaneous duplication of a genomic segment encompassing and spanning hundreds of kilobases.

View Article and Find Full Text PDF

Microfluidic isolation and release of live disseminated breast tumor cells in bone marrow.

PLoS One

March 2025

Department of Mechanical and Aerospace Engineering, Interdisciplinary Microsystems Group, Gainesville, Florida, United States of America.

Breast cancer represents a significant therapeutic challenge due to its aggressive nature and resistance to treatment. A major cause of treatment failure in breast cancer is the presence of rare, low-proliferative disseminated tumor cells (DTCs) in distant organs including the bone marrow. This study introduced a microfluidic-based approach to improve the immunodetection and isolation of these rare DTCs for downstream analysis, with an emphasis on optimizing immunocapture, release, and enrichment methods of live DTCs as compared to the standard approach for blood-borne circulating tumor cells (CTCs).

View Article and Find Full Text PDF

Background: Cultivated strawberry (Fragaria xananassa Duch.), an allo-octoploid species arising from at least 3 diploid progenitors, poses a challenge for genomic analysis due to its high levels of heterozygosity and the complex nature of its polyploid genome.

Results: This study developed the complete haplotype-phased genome sequence from a short-day strawberry, 'Florida Brilliance' without parental data, assembling 56 chromosomes from telomere to telomere.

View Article and Find Full Text PDF

Minimal Residual Disease in Metastatic Soft Tissue Sarcoma.

Curr Treat Options Oncol

March 2025

Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.

Liquid biopsies represent a promising and minimally invasive approach to diagnosing and monitoring cancer. In recent years, studies across a multitude of solid organ malignancies have suggested the clinical utility of biomarkers such as circulating tumor DNA (ctDNA). Particular attention has been given to serial assessment of such biomarkers in an effort to detect minimal residual disease (MRD), in order to predict which patients may be at highest risk of relapse following curative-intent surgical or medical intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!