A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient data integration under prior probability shift. | LitMetric

Efficient data integration under prior probability shift.

Biometrics

Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, United States.

Published: March 2024

Conventional supervised learning usually operates under the premise that data are collected from the same underlying population. However, challenges may arise when integrating new data from different populations, resulting in a phenomenon known as dataset shift. This paper focuses on prior probability shift, where the distribution of the outcome varies across datasets but the conditional distribution of features given the outcome remains the same. To tackle the challenges posed by such shift, we propose an estimation algorithm that can efficiently combine information from multiple sources. Unlike existing methods that are restricted to discrete outcomes, the proposed approach accommodates both discrete and continuous outcomes. It also handles high-dimensional covariate vectors through variable selection using an adaptive least absolute shrinkage and selection operator penalty, producing efficient estimates that possess the oracle property. Moreover, a novel semiparametric likelihood ratio test is proposed to check the validity of prior probability shift assumptions by embedding the null conditional density function into Neyman's smooth alternatives (Neyman, 1937) and testing study-specific parameters. We demonstrate the effectiveness of our proposed method through extensive simulations and a real data example. The proposed methods serve as a useful addition to the repertoire of tools for dealing dataset shifts.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biomtc/ujae035DOI Listing

Publication Analysis

Top Keywords

prior probability
12
probability shift
12
shift
5
efficient data
4
data integration
4
integration prior
4
shift conventional
4
conventional supervised
4
supervised learning
4
learning operates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!