A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Robust Semi-Supervised Broad Learning System Guided by Ensemble-Based Self-Training. | LitMetric

Broad learning system (BLS) with semi-supervised learning relieves label dependence and expands application. Despite some efforts and progress, the semi-supervised BLS still needs improvement, especially in handling imbalanced data or concept drift scenarios for self-training-based methods. To this extent, this article proposes a robust semi-supervised BLS guided by ensemble-based self-training (ESTSS-BLS). Distinctive to self-training that assigns the pseudo-label via a single classifier and confidence, the advocated ensemble-based self-training determines the pseudo-label according to the turnout of multiple BLSs. In addition, label purity is proposed to ensure the correctness and credibility of the auxiliary training data, which is a comprehensive evaluation of the voting. During iterative learning, a small portion of labeled data first trains multiple BLSs in parallel. Then, the system recursively updates its data, structure, and meta-parameters using label purity and a data-driven dynamic nodes mechanism that dynamically guides the network's structural adjustments to solve the concept drift problem caused by a large amount of auxiliary training data. The experimental results demonstrate that ESTSS-BLS exhibits exceptional performance compared to existing methods, with the lowest-time consumption and the highest accuracy, precision, recall, F1 score, and AUC. Exhilaratingly, it achieves an accuracy of 87.84% with only 0.1% labeled data on MNIST, and with just 2% labeled data, it matches the performance of supervised learning using all training data on NORB. In addition, ESTSS-BLS also performs stably on medical or biological data, verifying its high adaptability.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2024.3393020DOI Listing

Publication Analysis

Top Keywords

ensemble-based self-training
12
training data
12
labeled data
12
data
9
robust semi-supervised
8
broad learning
8
learning system
8
guided ensemble-based
8
semi-supervised bls
8
concept drift
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!