Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate prediction of Drug-Target binding Affinity (DTA) is a daunting yet pivotal task in the sphere of drug discovery. Over the years, a plethora of deep learning-based DTA models have emerged, rendering promising results in predicting the binding affinities between drugs and their target proteins. However, in contrast to the conventional approach of modeling binding affinity in vector spaces, we propose a more nuanced modeling process in a continuous space to account for the diversity of input samples. Initially, the drug is encoded using the Simplified Molecular Input Line Entry System (SMILES), while the target sequences are characterized via a pretrained language model. Subsequently, highly correlative information is extracted utilizing residual gated convolutional neural networks. In a departure from existing deep learning-based models, our model learns the hidden representations of the drugs and targets jointly. Instead of employing two vectors, our hidden representations consist of two Gaussian distributions. To validate the effectiveness of our proposal, we conducted evaluations on commonly utilized benchmark datasets. The experimental outcomes corroborated that our method surpasses the state-of-the-art vectorial representation methods in terms of performance. This approach, therefore, offers potential enhancements in the precision of DTA predictions, potentially contributing to more efficient drug discovery processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2024.3402661 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!