Background: Multimorbidity, defined as the coexistence of multiple chronic conditions, poses significant challenges to health care systems on a global scale. It is associated with increased mortality, reduced quality of life, and increased health care costs. The burden of multimorbidity is expected to worsen if no effective intervention is taken. Machine learning has the potential to assist in addressing these challenges since it offers advanced analysis and decision-making capabilities, such as disease prediction, treatment development, and clinical strategies.
Objective: This paper represents the protocol of a scoping review that aims to identify and explore the current literature concerning the use of machine learning for patients with multimorbidity. More precisely, the objective is to recognize various machine learning models, the patient groups involved, features considered, types of input data, the maturity of the machine learning algorithms, and the outcomes from these machine learning models.
Methods: The scoping review will be based on the guidelines of the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). Five databases (PubMed, Embase, IEEE, Web of Science, and Scopus) are chosen to conduct a literature search. Two reviewers will independently screen the titles, abstracts, and full texts of identified studies based on predefined eligibility criteria. Covidence (Veritas Health Innovation Ltd) will be used as a tool for managing and screening papers. Only studies that examine more than 1 chronic disease or individuals with a single chronic condition at risk of developing another will be included in the scoping review. Data from the included studies will be collected using Microsoft Excel (Microsoft Corp). The focus of the data extraction will be on bibliographical information, objectives, study populations, types of input data, types of algorithm, performance, maturity of the algorithms, and outcome.
Results: The screening process will be presented in a PRISMA-ScR flow diagram. The findings of the scoping review will be conveyed through a narrative synthesis. Additionally, data extracted from the studies will be presented in more comprehensive formats, such as charts or tables. The results will be presented in a forthcoming scoping review, which will be published in a peer-reviewed journal.
Conclusions: To our knowledge, this may be the first scoping review to investigate the use of machine learning in multimorbidity research. The goal of the scoping review is to summarize the field of literature on machine learning in patients with multiple chronic conditions, highlight different approaches, and potentially discover research gaps. The results will offer insights for future research within this field, contributing to developments that can enhance patient outcomes.
International Registered Report Identifier (irrid): PRR1-10.2196/53761.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148516 | PMC |
http://dx.doi.org/10.2196/53761 | DOI Listing |
Chemistry
December 2024
Pandit Deendayal Energy University, Chemistry, Gandhinagar, Gujarat-382077, India, Gandhinagar, INDIA.
The accurate discrimination among various volatile organic compounds, especially ethanol and acetone possess a serious concern for metal oxide based chemiresistive sensors. The work presents a systematic approach to address the issue by utilizing superior sensing potentiality of Zn0.5Ni0.
View Article and Find Full Text PDFJAMA Netw Open
December 2024
Division of Geriatrics, Department of Medicine, University of California, San Francisco.
JAMA Netw Open
December 2024
Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, United Kingdom.
Importance: Issues related to social connection are increasingly recognized as a global public health priority. However, there is a lack of a holistic understanding of social connection and its health impacts given that most empirical research focuses on a single or few individual concepts of social connection.
Objective: To explore patterns of social connection and their associations with health and well-being outcomes.
Int Urol Nephrol
December 2024
Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China.
This paper evaluated the bibliometric study by Li et al. (Int Urol Nephrol, 2024) on machine learning in renal medicine. Although the study claims to summarize the forefront trends and hotspots in this field, several key issues require further clarification to effectively guide future research.
View Article and Find Full Text PDFEmerg Radiol
December 2024
Emergency Radiology, Department of Radiology, Massachusetts General Hospial, Boston, USA.
Background: Emergency/trauma radiology artificial intelligence (AI) is maturing along all stages of technology readiness, with research and development (R&D) ranging from data curation and algorithm development to post-market monitoring and retraining.
Purpose: To develop an expert consensus document on best research practices and methodological priorities for emergency/trauma radiology AI.
Methods: A Delphi consensus exercise was conducted by the ASER AI/ML expert panel between 2022-2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!