Bromine-based flow batteries (BFB) have always suffered from poor kinetics due to the sluggish Br /Br redox, hindering their practical applications. Developing cathode materials with high catalytic activity is critical to address this challenge. Herein, the in-depth investigation for the free energy of the bromine redox electrode is conducted initially through DFT calculations, establishing the posterior desorption during oxidation as the rate-determining step. An urchin-like titanium nitride hollow sphere (TNHS) composite is designed and synthesized as the catalyst for bromine redox. The large difference in Br and Br adsorption capability of TNHS promotes rapid desorption of generated Br during the oxidation process, liberating active sites timely to enable smooth ongoing reactions. Besides, the urchin-like microporous/mesoporous structure of TNHS provides abundant active surface for bromine redox reactions, and ample cavities for the bromine accommodation. The inherently high conductivity of TNHS enables facile electron transfer through multiple channels. Consequently, zinc-bromide flow batteries with TNHS catalyst exhibit significantly enhanced kinetics, stably operating at 80 mA cm with 82.78% energy efficiency. Overall, this study offers a solving strategy and catalyst design approach to the sluggish kinetics that has plagued bromine-based flow batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202309712DOI Listing

Publication Analysis

Top Keywords

flow batteries
16
bromine-based flow
12
bromine redox
12
hollow sphere
8
tnhs
5
urchin-like mesoporous
4
mesoporous tin
4
tin hollow
4
sphere enabling
4
enabling promoted
4

Similar Publications

The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes.

View Article and Find Full Text PDF

Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).

View Article and Find Full Text PDF

Zinc (Zn)-based batteries have been persistently challenged by the critical issue of inhomogeneous zinc deposition/stripping process on substrate surface. Herein, we reveal that zinc electrodeposition behaviors dramatically improved through the introduction of highly zincophilic copper oxide nanoparticles (CuO NPs). Strong electronic redistribution between Zn and CuO explains the high Zn affinity on CuO, with negligible nucleation overpotential.

View Article and Find Full Text PDF

Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker.

View Article and Find Full Text PDF

Constructing new-generation ion exchange membranes under confinement regime.

Natl Sci Rev

February 2025

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!