Objective: Artificial intelligence (AI) is the ability of a computer machine to display human capabilities such as reasoning, learning, planning, and creativity. Such processing technology receives the data (already prepared or collected), processes them, using models and algorithms, and answers questions about forecasting and decision-making. AI systems are also able to adapt their behavior by analyzing the effects of previous actions and working then autonomously. Artificial intelligence is already present in our lives, even if it often goes unnoticed (shopping networked, home automation, vehicles). Even in the medical field, artificial intelligence can be used to analyze large amounts of medical data and discover matches and patterns to improve diagnosis and prevention. In forensic medicine, the applications of AI are numerous and are becoming more and more valuable.

Method: A systematic review was conducted, selecting the articles in one of the most widely used electronic databases (PubMed). The research was conducted using the keywords "AI forensic" and "machine learning forensic". The research process included about 2000 Articles published from 1990 to the present.

Results: We have focused on the most common fields of use and have been then 6 macro-topics were identified and analyzed. Specifically, articles were analyzed concerning the application of AI in forensic pathology (main area), toxicology, radiology, Personal identification, forensic anthropology, and forensic psychiatry.

Conclusion: The aim of the study is to evaluate the current applications of AI in forensic medicine for each field of use, trying to grasp future and more usable applications and underline their limitations.

Download full-text PDF

Source
http://dx.doi.org/10.7417/CT.2024.5062DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
forensic medicine
12
systematic review
8
forensic
6
artificial
4
intelligence future
4
future perspectives
4
perspectives forensic
4
medicine systematic
4
review objective
4

Similar Publications

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

Importance: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-corrected VA without technician costs, reduce visit time, or facilitate home monitoring of VA from fundus images obtained outside of the clinic.

Objective: To estimate spectacle-corrected VA measured on a standard eye chart among patients with diabetic macular edema (DME) in clinical practice settings using previously validated AI algorithms evaluating best-corrected VA from fundus photographs in eyes with DME.

View Article and Find Full Text PDF

Introduction: Screening diabetic retinopathy (DR) for timely management can reduce global blindness. Many existing DR screening programs worldwide are non-digital, standalone, and deployed with grading retinal photographs by trained personnel. To integrate the screening programs, with or without artificial intelligence (AI), into hospital information systems to improve their effectiveness, the non-digital workflow must be transformed into digital.

View Article and Find Full Text PDF

Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.

Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!