Objective: Screw loosening is a common complication of internal fixation of pedicle screw. Therefore, the development of a pedicle screw with low loosening rate and high biosafety is of great clinical significance. This study aimed to investigate whether the application of a porous scaffold structure can improve the stability of pedicle screws by comparing the biomechanical properties of novel porous scaffold core pedicle screws (PSCPSs) with those of hollow lateral hole pedicle screws (HLHPSs) in a porcine lumbar spine.
Methods: Thirty-two pedicle screws of both types were implanted bilaterally into the L1-4 vertebrae of four Bama pigs, with our newly designed PSCPSs on the right and HLHPSs on the left. All the Bama pigs were sacrificed 16 weeks postoperatively, and the lumbar spine was freed into individual vertebrae. Biomechanical properties of both the pedicle screws were evaluated using pull-out tests, as well as cyclic bending and pull-out tests, while the mechanical properties were assessed using three-point bending tests. The data generated were statistically analyzed using paired-sample t-tests and two independent sample t-tests.
Results: We found that the maximal pull-out forces before and after cyclic bending of the PSCPSs (1161.50 ± 337.98 N and 1075.25 ± 223.33 N) were significantly higher than those of the HLHPSs (948.38 ± 194.32 N and 807.13 ± 242.75 N) (p < 0.05, p < 0.05). In 800 cycles of the bending tests, neither PSCPS nor HLHPS showed loosening or visible detachment, but their maximal pull-out forces after cyclic bending tests decreased compared to those in cycles without cyclic bending tests (7.43% and 14.89%, respectively), with no statistical significance (p > 0.05 and p > 0.05, respectively). Additionally, both screws buckled rather than broke in the three-point bending tests, with no statistically significant differences between the maximal bending load and modulus of elasticity of the two screws (p > 0.05 and p > 0.05, respectively).
Conclusions: Compared with the HLHPSs, the PSCPSs have greater pull-out resistance and better fatigue tolerance with appropriate mechanical properties. Therefore, PSCPSs theoretically have significant potential for clinical applications in reducing the incidence of loosening after pedicle screw implantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216838 | PMC |
http://dx.doi.org/10.1111/os.14091 | DOI Listing |
Am J Case Rep
January 2025
Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
BACKGROUND The management of unstable atlas fractures remains a subject of ongoing debate and controversy. The conservative surgical treatment commonly involves fusion, resulting in severe loss of cervical spine mobility, and a large incisions and extensive tissue dissection are required. We aim to introduce a novel concept and surgical approach for treating atlas fracture, one that involves minimizing trauma while maintaining mobility of the upper cervical spine without resorting to fusion.
View Article and Find Full Text PDFInt J Surg Case Rep
January 2025
University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia; Department of Orthopedic Surgery, Hospital Mongi Slim La Marsa, Tunisia.
Introduction And Importance: Osteoblastoma is a rare benign bone tumor, accounting for 1 % of primary bone tumors, often affecting the spine and sacrum. Accurate diagnosis is essential for appropriate treatment and prognosis.
Case Presentation: A 19-year-old male presented with two years of persistent nocturnal radicular and low back pain unresponsive to anti-inflammatory medications.
Surg Pract Sci
December 2024
Spine Surgery Department, Vietduc University Hospital, Viet Nam.
This descriptive longitudinal study aims to assess the risk factors for severe thoracic and lumbar vertebral compression fractures before and after surgery, contributing to preventive knowledge enhancement in communities and effective treatment management. The study involved 34 patients diagnosed with thoracic and lumbar vertebral compression fractures requiring surgery with bio-cement-augmented pedicle screws between June 2021 and June 2022. Postoperative complications, notably adjacent segment injury, were monitored, and patients received osteoporosis management post-surgery.
View Article and Find Full Text PDFJ Korean Neurosurg Soc
January 2025
Department of Neurosurgery, University of Opole, Opole, Poland.
Cement-augmented pedicle screw instrumentation is a widely accepted method for managing osteoporotic fractures, but it carries inherent risks, particularly related to cement leakage and embolism. This study aimed to analyze a clinical case of complications following cement fixation and provide a detailed review of relevant literature. A 70-year-old patient underwent transpedicular screw instrumentation from L2-L4 with polymethyl methacrylate augmentation, which resulted in cement leakage into the spinal canal and subsequent pulmonary embolism.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, JPN.
Osteoporotic vertebral fractures (OVFs) in elderly patients pose challenges due to bone destruction and surgical risks. This case report describes a minimally invasive approach using calcium phosphate cement (CPC) vertebroplasty and short fusion with cement augmentation of pedicle screws (CAPS) in a 91-year-old woman with severe OVF. The patient underwent CPC vertebroplasty at L1 and CAPS fixation at T12-L2, followed by osteoporosis medication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!