Purse-seine fishers using drifting fish aggregating devices (dFADs), mainly built with bamboo, plastic buoys, and plastic netting, to aggregate and catch tropical tuna, deploy 46,000-65,000 dFADs per year in the Pacific Ocean. Some of the major concerns associated with this widespread fishing device are potential entanglement of sea turtles and other marine fauna in dFAD netting; marine debris and pollution; and potential ecological damage via stranding on coral reefs, beaches, and other essential habitats for marine fauna. To assess and quantify the potential connectivity (number of dFADs deployed in an area and arriving in another area) between dFAD deployment areas and important oceanic or coastal habitat of critically endangered leatherback (Dermochelys coriacea) and hawksbill (Eretmochelys imbricata) sea turtles in the Pacific Ocean, we conducted passive-drift Lagrangian experiments with simulated dFAD drift profiles and compared them with known important sea turtle areas. Up to 60% of dFADs from equatorial areas were arriving in essential sea turtle habitats. Connectivity was less when only areas where dFADs are currently deployed were used. Our simulations identified potential regions of dFAD interactions with migration and feeding habitats of the east Pacific leatherback turtle in the tropical southeastern Pacific Ocean; coastal habitats of leatherback and hawksbill in the western Pacific (e.g., archipelagic zones of Indonesia, Papua New Guinea, and Solomon Islands); and foraging habitat of leatherback in a large equatorial area south of Hawaii. Additional research is needed to estimate entanglements of sea turtles with dFADs at sea and to quantify the likely changes in connectivity and distribution of dFADs under new management measures, such as use of alternative nonentangling dFAD designs that biodegrade, or changes in deployment strategies, such as shifting locations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589028PMC
http://dx.doi.org/10.1111/cobi.14295DOI Listing

Publication Analysis

Top Keywords

sea turtles
16
pacific ocean
12
drifting fish
8
fish aggregating
8
marine fauna
8
sea turtle
8
sea
7
dfads
7
potential
5
pacific
5

Similar Publications

DNA damage triggers the death of green sea turtle-derived cells at high temperature.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka-city 020-8551, Japan.

As temperatures rise due to increasingly severe global warming, the effect of high temperatures on wildlife, including green sea turtles, is one of the issues that must be addressed to ensure the conservation of biodiversity. In the current study, we found that green sea turtle cell death due to apoptosis occurred at 37 °C, which suppressed cell proliferation. We also found that high temperature-induced heat stress led to the accumulation of DNA damage in green sea turtle cells.

View Article and Find Full Text PDF

The rising diversity and concentration of contaminants have surpassed ecological thresholds, threatening marine ecosystems. The effects of pollutants on marine animals, particularly sea turtles, are receiving increased attention due to their role as indicators of human impacts. This study examined the health implications of contaminant exposure in three green turtle (Chelonia mydas) foraging sites in the southern Great Barrier Reef, Australia.

View Article and Find Full Text PDF

Characterizing how organisms respond to transient temperatures may further our understanding of their susceptibility to climate change. Past studies in the freshwater turtle, , have demonstrated that the timing and duration of heat waves can have major implications for the response of genes involved in gonadal development and the production of female hatchlings. Yet, no study has considered how the response of these genes to transient cold snap exposure may affect gonadal development and the production of males.

View Article and Find Full Text PDF

Reproductive strategies in loggerhead sea turtle : polyandry and polygyny in a Southwest Atlantic rookery.

PeerJ

January 2025

Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Laboratório de Genética e Evolução Molecular, Vitória, Espírito Santo, Brazil.

Sea turtles are highly migratory and predominantly inhabit oceanic environments, which poses significant challenges to the study of their life cycles. Research has traditionally focused on nesting females, utilizing nest counts and mark-recapture methods, while male behavior remains understudied. To address this gap, previous studies have analyzed the genotypes of females and hatchlings to indirectly infer male genotypes and evaluate the extent of multiple paternity within populations.

View Article and Find Full Text PDF

Thiacloprid exposure disrupts the gut-liver axis and induces liver dysfunction in the Reeves' turtles (Mauremys reevesii).

Ecotoxicol Environ Saf

January 2025

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China. Electronic address:

As one of the neonicotinoid insecticides, thiacloprid (THI) is extensively used in agriculture and frequently detected in various aquatic environments, posing a potential threat to aquatic organisms. However, the effects of THI exposure on aquatic turtles remain unknown. In this study, we focused on investigating whether THI has a toxic effect on the gut-liver axis in aquatic turtles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!