Sulfur dioxide (SO), a common environmental and industrial air pollutant, possesses a potent effect in eliciting cough reflex, but the primary type of airway sensory receptors involved in its tussive action has not been clearly identified. This study was carried out to determine the relative roles of three major types of vagal bronchopulmonary afferents [slowly adapting receptors (SARs), rapidly adapting receptors (RARs), and C-fibers] in regulating the cough response to inhaled SO. Our results showed that inhalation of SO (300 or 600 ppm for 8 min) evoked an abrupt and intense stimulatory effect on bronchopulmonary C-fibers, which continued for the entire duration of inhalation challenge and returned toward the baseline in 1-2 min after resuming room air-breathing in anesthetized and mechanically ventilated mice. In stark contrast, the same SO inhalation challenge generated a distinct and consistent inhibitory effect on both SARs and phasic RARs; their phasic discharges synchronized with respiratory cycles during the baseline (breathing room air) began to decline progressively within 1-3 min after the onset of SO inhalation, ceased completely before termination of the 8-min inhalation challenge, and then slowly returned toward the baseline after >40 min. In a parallel study in awake mice, inhalation of SO at the same concentration and duration as that in the nerve recording experiments evoked cough responses in a pattern and time course similar to that observed in the C-fiber responses. Based on these results, we concluded that stimulation of vagal bronchopulmonary C-fibers is primarily responsible for triggering the cough response to inhaled SO. This study demonstrated that inhalation of a high concentration of sulfur dioxide, an irritant gas and common air pollutant, completely and reversibly inhibited the neural activities of both slowly adapting receptor and rapidly adapting receptor, two major types of mechanoreceptors in the lungs with their activities conducted by myelinated fibers. Furthermore, the results of this study suggested that stimulation of vagal bronchopulmonary C-fibers is primarily responsible for triggering the cough reflex responses to inhaled sulfur dioxide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380998PMC
http://dx.doi.org/10.1152/ajpregu.00281.2023DOI Listing

Publication Analysis

Top Keywords

vagal bronchopulmonary
16
sulfur dioxide
16
cough response
12
response inhaled
12
bronchopulmonary c-fibers
12
inhalation challenge
12
bronchopulmonary afferents
8
inhaled sulfur
8
air pollutant
8
cough reflex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!