Introduction: Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP).
Methods: We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy.
Results: We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy.
Conclusion: The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102096 | PMC |
http://dx.doi.org/10.2147/IJN.S445334 | DOI Listing |
Med Phys
January 2025
Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, NKI-AvL, Amsterdam, Netherlands.
Photodynamic therapy (PDT) is a treatment modality clinically approved for several oncologic indications, including esophageal and endobronchial cancers, precancerous conditions including Barrett's esophagus and actinic keratosis, and benign conditions like age-related macular degeneration. While it is currently clinically underused, PDT is an area of significant research interest. Because PDT relies on the absorption of light energy by intrinsic or administered absorbers, the dosimetric quantity of interest is the absorbed energy per unit mass of tissue, proportional to the fluence rate of light in tissue.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
The combination of photosensitizers (PSs) and nanomaterials is a widely used strategy to enhance PS efficacy and broaden their applicability. However, the current nanocarrier-based delivery strategies focus on conventional PSs, neglecting the critical issue of PS phototoxicity. In this study, DHUOCl-25, an activatable PS (aPS) activated by hypochlorous acid, is synthesized by combining a silicon source structure and an activation unit.
View Article and Find Full Text PDFBiomacromolecules
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.
View Article and Find Full Text PDFNanoscale
January 2025
Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China.
Gold nanorods (AuNRs) have shown great potential as photothermal agents for cancer therapy. However, the biosafety of AuNRs ordinarily synthesized using a cationic ligand assistance procedure has always been a subject of controversy, which limits their application in tumor therapy. In this study, we propose a novel strategy to enhance the biocompatibility of AuNRs by constructing a biological coating derived from silk fibroin (SF) on their surface.
View Article and Find Full Text PDFBioact Mater
April 2025
School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Immune checkpoint blockade (ICB) therapy is a widely favored anti-tumor treatment, but it shows limited response to non-immunogenic "cold" tumors and suffers from drug resistance. Photodynamic therapy (PDT), as a powerful localized treatment approach, can convert a "cold tumor" into a "hot tumor" by inducing immunogenic cell death (ICD) in tumor cells, thereby enhancing tumor immunogenicity and promoting tumor immunotherapy. However, the effectiveness of PDT is largely hindered by the limited penetration depth into tumor tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!