Understanding the surface properties of particles is crucial for optimizing the performance of formulated products in various industries. However, acquiring this understanding often requires expensive trial-and-error studies. Here, we present advanced surface analysis tools that enable the visualization and quantification of chemical and topological information derived from crystallographic data. By employing functional group analysis, roughness calculations, and statistical interaction data, we facilitate direct comparisons of surfaces. We further demonstrate the practicality of our approach by correlating the sticking propensity of distinct ibuprofen morphologies with surface and particle descriptors calculated from a single crystal structure. Our findings support and expand upon previous work, demonstrating that the presence of a carboxylic acid group on the {011} facet leads to significant differences in particle properties and explains the higher electrostatic potential observed in the block-like morphology. While our surface analysis tools are not intended to replace the importance of chemical intuition and expertise, they provide valuable insights for formulators and particle engineers, facilitating informed, data-driven decisions to mitigate formulation risks. This research represents a significant step toward a comprehensive understanding of particle surfaces and their impact on products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099916PMC
http://dx.doi.org/10.1021/acs.cgd.4c00259DOI Listing

Publication Analysis

Top Keywords

particle properties
8
surface analysis
8
analysis tools
8
surface
5
particle
5
surface analysis-from
4
analysis-from crystal
4
crystal structures
4
structures particle
4
properties understanding
4

Similar Publications

Computationally Efficient Polarizable MD Simulations: A Simple Water Model for the Classical Drude Oscillator Polarizable Force Field.

J Phys Chem Lett

January 2025

University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.

An improvement in the computational efficiency of polarizable force field simulations is made through the development of a polarizable Drude water model, SWM3, in combination with the use of Lennard-Jones Particle Mesh Ewald (LJPME) for the treatment of long-range LJ interactions. The experimental bulk properties, density, heat of vaporization, dielectric constant, and self-diffusion constant of the SWM3 model are accurately replicated at ambient condition. The temperature dependence of the bulk properties is also captured except for the density.

View Article and Find Full Text PDF

Polyetheretherketone (PEEK) is a high-performance polymer material for developing varying orthopedic, spine, cranial, maxillofacial, and dental implants. Despite their commendable mechanical properties and biocompatibility, the major limitation of PEEK implants is their low affinity to osseointegrate with the neighboring bone. Over the last two decades, several efforts have been made to incorporate bioactive components such as bioceramic particles in PEEK to enhance its osseointegration capacity.

View Article and Find Full Text PDF

Advances in understanding dietary fiber: Classification, structural characterization, modification, and gut microbiome interactions.

Compr Rev Food Sci Food Saf

January 2025

Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.

Gut microbiota and their metabolites profoundly impact host physiology. Targeted modulation of gut microbiota has been a long-term interest in the scientific community. Numerous studies have investigated the feasibility of utilizing dietary fibers (DFs) to modulate gut microbiota and promote the production of health-beneficial bacterial metabolites.

View Article and Find Full Text PDF

Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.

View Article and Find Full Text PDF

Adsorption isotherms in roasted specialty coffee ( L.): Dataset and statistical tools for optimizing storage conditions and enhancing shelf life.

Data Brief

February 2025

Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Departamento de Ingeniería Agrícola, Universidad Surcolombiana, Neiva-Huila 410001, Colombia.

This work presents a comprehensive dataset of adsorption isotherms and infrared spectral data for roasted specialty coffee ( L.). The dataset includes adsorption isotherms for whole roasted beans and ground coffee at medium (850 µm) and fine (600 µm) particle sizes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!