Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099340PMC
http://dx.doi.org/10.1016/j.vgie.2024.02.008DOI Listing

Publication Analysis

Top Keywords

functional luminal
4
luminal imaging
4
imaging probe
4
probe assessment
4
assessment eosinophilic
4
eosinophilic esophagitis
4
esophagitis stricture
4
stricture optical-haptic
4
optical-haptic dilation
4
dilation dilating
4

Similar Publications

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Phenobarbital is a common antiseizure medication that has a relatively narrow therapeutic window. Therapeutic drug monitoring (TDM) is a helpful tool to guide dose adjustments for phenobarbital and avoid its toxicity. We investigated the agreement among 3 methods of quantifying phenobarbital in canine plasma: high-performance liquid chromatography (HPLC), point-of-care (POC) testing, and the FDA-approved immunoassay analyzer.

View Article and Find Full Text PDF

Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.

View Article and Find Full Text PDF

Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types.

View Article and Find Full Text PDF

Early-Life Antibiotic Exposures: Paving the Pathway for Dysbiosis-Induced Disorders.

Eur J Pharmacol

January 2025

School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia. Electronic address:

Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!