Hypothermia has been widely used to treat moderate to severe neonatal hypoxic-ischemic encephalopathy (HIE), yet evaluating the effects of hypothermia relies on clinical neurology, neuroimaging, amplitude-integrated electroencephalography, and follow-up data on patient outcomes. Biomarkers of brain injury have been considered for estimating the effects of hypothermia. Proteins specific to the central nervous system (CNS) are components of nervous tissue, and once the CNS is damaged, these proteins are released into biofluids (cerebrospinal fluid, blood, urine, tears, saliva), and they can be used as markers of brain damage. Clinical reports have shown that CNS-specific marker proteins (CNSPs) were early expressed in biofluids after brain damage and formed unique biochemical profiles. As a result, these markers may serve as an indicator for screening brain injury in infants, monitoring disease progression, identifying damage region of brain, and assessing the efficacy of neuroprotective measures. In clinical work, we have found that there are few reports on using CNSPs as biological signals in hypothermia for neonatal HIE. The aim of this article is to review the classification, origin, biochemical composition, and physiological function of CNSPs with changes in their expression levels after hypothermia for neonatal HIE. Hopefully, this review will improve the awareness of CNSPs among pediatricians, and encourage future studies exploring the mechanisms behind the effects of hypothermia on these CNSPs, in order to reduce the adverse outcome of neonatal HIE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100326PMC
http://dx.doi.org/10.3389/fped.2024.1288853DOI Listing

Publication Analysis

Top Keywords

effects hypothermia
12
neonatal hie
12
neonatal hypoxic-ischemic
8
hypoxic-ischemic encephalopathy
8
central nervous
8
nervous system
8
brain injury
8
brain damage
8
hypothermia neonatal
8
hypothermia
7

Similar Publications

This study investigated the impact of multiple nerve block methods (local anesthesia, conventional radiofrequency thermocoagulation [CRF], and pulsed radiofrequency [PRF]) on thermoregulation. Focusing on hypothalamic function, the effects of local anesthesia, CRF, and PRF on central and peripheral temperatures were analyzed and compared. Our findings revealed that all three nerve block groups cause a decrease in central temperature, with the CRF group exhibiting the most pronounced effect.

View Article and Find Full Text PDF

Remote ischemic conditioning (RIC) has attracted considerable attention as a brain protection strategy, although its impact remains unclear. Hypothermia is the most effective strategy in experimental transient cerebral ischemia. Therefore, we compared the efficacy of RIC, hypothermia, and no treatment on cerebral ischemia.

View Article and Find Full Text PDF

Histone acetylation alteration by KAT6A inhibitor WM-1119 suppresses IgE-mediated mast cell activation and allergic inflammation via reduction in AP-1 signaling.

Biochem Pharmacol

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

Activation of immunoglobulin E (IgE)-associated mast cells (MCs) triggers the onset of pro-inflammatory signals associated with type I allergic diseases. Although histone acetylation changes have been associated with inflammatory diseases, the impact of lysine-acetyltransferase (KAT) inhibitors on IgE-mediated MCs function is unclear. Potential anti-allergic effects of the KAT6A inhibitor WM-1119 on IgE-mediated MCs activation and allergic inflammation were examined in this study.

View Article and Find Full Text PDF

Mild therapeutic hypothermia showed potential neuroprotective properties during and after cerebral hypoxia or ischemia in experimental animal studies. However, in clinical trials, where hypothermia is mainly applied after reperfusion, results were divergent and neurophysiological effects unclear. In our current study, we employed human-derived neuronal networks to investigate how treatment with hypothermia during hypoxia influences neuronal functionality and whether it improves post-hypoxic recovery.

View Article and Find Full Text PDF

Background: Although maintaining a stable body temperature during the perioperative period is crucial for the recovery of neonates, hypothermia frequently occurs during surgical procedures in this vulnerable population. A comprehensive analysis of intraoperative details, including medical history and monitoring, is therefore essential for understanding temperature variations and identifying risk factors for severe hypothermia.

Objective: In this study, we delineated the characteristic patterns of intraoperative temperature fluctuations in neonates and determined the risk factors impacting the severity of hypothermia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!