Tomatoes (), a high-value crop, exhibit a unique relationship with salt, where increased levels of NaCl can enhance flavor, aroma and nutritional quality but can cause oxidative damage and reduce yields. A drive for larger, better-looking tomatoes has reduced the importance of salt sensitivity, a concern considering that the sodium content of agricultural land is increasing over time. Currently, there are no simple ways of comparing salt tolerance between plants, where a holistic approach looking at [Na] throughout the plant typically involves destructive, single time point measurements or expensive imaging techniques. Finding methods that collect rapid information in real time could improve the understanding of salt resistance in the field. Here we investigate the uptake of NaCl by tomatoes using TETRIS (ime-resolved lectrochemical echnology for plant oot environment chemical ensing), a platform used to measure chemical signals in the root area of living plants. Low-cost, screen-printed electrochemical sensors were used to measure changes in salt concentration electrical impedance measurements, facilitating the monitoring of the uptake of ions by roots. We not only demonstrated differences in the rate of uptake of NaCl between tomato seedlings under different growth conditions, but also showed differences in uptake between varieties of tomato with different NaCl sensitivities and the relatively salt-resistant "wild tomato" () sister species. Our results suggest that TETRIS could be used to ascertain physiological traits of salt resistance found in adult plants but at the seedling stage of growth. This extrapolation, and the possibility to multiplex and change sensor configuration, could enable high-throughput screening of many hundreds or thousands of mutants or varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097007 | PMC |
http://dx.doi.org/10.1039/d4sd00065j | DOI Listing |
Front Plant Sci
December 2024
Department of Life Sciences, Changzhi University, Changzhi, China.
is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China. Electronic address:
Bacterial infections have become a fatal issue for human health. The excessive use of antibiotics leads to bacterial resistance. It is of great importance to develop alternate antimicrobial nanomaterials for effective antibacterial therapy.
View Article and Find Full Text PDFNeuropsychopharmacol Hung
December 2024
Municipal Clinic of Szentendre, Internal Medicine, Szentendre, Hungary.
The discovery of the functioning of intra- and extracellular ion compartments and cell membranes' operation opened the possibility of extending Claude Bernard's theory to intracellular ions. In contrast, by underestimating the role of ions, many misconceptions have prevailed. The author points out that maintaining the constancy of carbon dioxide is especially important.
View Article and Find Full Text PDFAntimicrob Steward Healthc Epidemiol
December 2024
Division of Infectious Diseases, Veteran's Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA.
A β-lactam plus a macrolide or a respiratory fluoroquinolone alone is recommended as standard empiric antibacterial therapy for non-severe adults hospitalized with community-acquired pneumonia (CAP) per Infectious Diseases Society of America guidelines. However, the evidence in support of adding empiric atypical antibacterial therapy, and specifically the addition of a macrolide, is conflicting and should be balanced with additional factors: the necessity of covering atypical organisms, benefits of macrolide-associated immunomodulation, harms associated with antibiotic use, and selection for antibiotic-resistant organisms. In this review, we examine the role of atypical coverage in standard treatment regimens for patients admitted with non-severe CAP and specifically focus on the addition of macrolides to β-lactams.
View Article and Find Full Text PDFMater Horiz
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
MAX (MAX) phases are a novel class of materials with a closely packed hexagonal structure that bridge the gap between metals and ceramics, garnering tremendous research interest worldwide in recent years. Benefiting from their unique layered structure and mixed covalent-ionic-metallic bonding characteristics, MAX phase coatings possess excellent oxidation resistance, and exceptional electrical and thermal conductivities, making them highly promising for applications in advanced nuclear materials, battery plate protection materials, and aero-engine functional materials. This review aims to provide a comprehensive understanding of MAX phase coatings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!