Aim: To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy (DR) and provide a novel strategy to elucidate the pathological mechanism of DR.
Methods: The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy (PDR), 23 with non-proliferative retinopathy (NPDR), 27 without retinopathy (DM), and 29 from the sex-, age- and BMI- matched healthy controls (29 HC) were analyzed by 16S rDNA gene sequencing. Sixty fecal samples from PDR, DM, and HC groups were assayed by untargeted metabolomics. Fecal metabolites were measured using liquid chromatography-mass spectrometry (LC-MS) analysis. Associations between gut microbiota and fecal metabolites were analyzed.
Results: A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR, and the close correlation of the disease progression with PDR-related microbiome and metabolites were found. To be specific, the structure of gut microbiota differed in four groups. Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups, than those in DM and HC groups. A cluster of microbiome enriched in PDR group, including , , , , was observed. Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group. Arginine, serine, ornithine, and arachidonic acid were significantly enriched in PDR group, while proline was enriched in HC group. Functional analysis illustrated that arginine biosynthesis, lysine degradation, histidine catabolism, central carbon catabolism in cancer, D-arginine and D-ornithine catabolism were elevated in PDR group. Correlation analysis revealed that and were positively associated with L-arginine, ornithine levels in fecal samples.
Conclusion: This study elaborates the different microbiota structure in the gut from four groups. The relative abundance of and are associated with the severity of DR. Amino acid and fatty acid catabolism is especially disordered in PDR group. This may help provide a novel diagnostic parameter for DR, especially PDR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074191 | PMC |
http://dx.doi.org/10.18240/ijo.2024.05.13 | DOI Listing |
Microb Biotechnol
January 2025
Department of Animal Biotechnology, Dankook University, Cheonan, Korea.
The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.
View Article and Find Full Text PDFDatabase (Oxford)
January 2025
European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera.
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland.
Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.
Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.
Adv Healthc Mater
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!