Brucine (BRU), an active constituent of L., is one of the potential agents to control subside swelling in arthritis. However, its hydrophobic nature, poor permeation, shorter half-life, narrow therapeutic window, and higher toxicity impede its clinical applications. Hence, this investigation was aimed to develop and evaluate novel BRU loaded β-cyclodextrin (β-CD) nanosponges (BRUNs) hydrogel consisting rosemary essential oil (RO), which have been tailored for delayed release, enhanced skin permeation, and reduced irritation, while retaining anti-oxidant and anti-inflammatory activities of this bioactive. Firstly, BRUNs were fabricated by melt technique and characterized appropriately. BRUNs6 demonstrated two fold enhancement in BRU solubility (441.692 ± 38.674) with minimum particle size (322.966 ± 54.456) having good PDI (0.571 ± 0.091) and zeta potential (-14.633 ± 6.357). In vitro release results demonstrated delayed release of BRU from BRUNs6 (67 ± 4.25%) over 24 h through molecular diffusion mechanism. Further, preserved anti-inflammatory (53.343 ± 0.191%) and antioxidant potential (60.269 ± 0.073%) of bioactive was observed in BRUNs6. Hence, this Ns batch was engrossed with Carbopol®934 hydrogel with RO and characterized. In vitro (release and anti-inflammatory activity), (skin permeability) and in vivo (carrageenan-induced inflammation) assays along with irritation study were conducted for fabricated hydrogels. Results revealed that in vitro release of BRU was further delayed from Ns hydrogel with RO (56.45 ± 3.01%) following Fickian mechanism. Considerable enhancement in skin permeability (60.221 ± 0.322 µg/cm/h) and preservation of anti-inflammatory activity (94.736 ± 2.002%) was also observed in BRUNs6 hydrogel containing RO. The irritation of BRU was found reduced (half) after its entrapped in Ns. Further, as a proof of concept, BRUNs6 hydrogel with RO effectively reduced (75.757 ± 0.944%) carrageenan-induced inflammation in rat model in comparison to pure BRU (54.914 ± 1.081%). Hence, BRUNs hydrogel with RO can be considered as a promising alternative for dermal delivery of BRU in arthritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099000 | PMC |
http://dx.doi.org/10.1007/s13205-024-03997-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!