Background: According to the International Diabetes Federation, there will be 578 million individuals worldwide with diabetes by 2030 and 700 million by 2045. One of the promising drug targets to fight diabetes is α-glucosidase (AG), and its inhibitors may be used to manage diabetes by reducing the breakdown of complex carbohydrates into simple sugars. The study aims to identify and validate potential AG inhibitors in natural sources to combat diabetes.

Methods: Computational techniques such as structure-based virtual screening and molecular dyncamic simulation were employed to predict potential AG inhibitors from compounds of . Finally, in silico results were validated by analysis using -butanol fraction of crude methanol extracts.

Results: The XP glide scores of top seven hits OI_13, OI_66, OI_16, OI_44, OI_43, OI_20, OI_78 and acarbose were -14.261, -13.475, -13.074, -13.045, -12.978, -12.659, -12.354 and -12.296 kcal/mol, respectively. These hits demonstrated excellent binding affinity towards AG, surpassing the known AG inhibitor acarbose. The MM-GBSA dG binding energies of OI_13, OI_66, and acarbose were -69.093, -62.950, and -53.055 kcal/mol, respectively. Most of the top hits were glycosides, indicating that active compounds lie in the -butanol fraction of the extract. The IC value for AG inhibition by -butanol fraction was 248.1 μg/ml, and for that of pure acarbose it was 89.16 μg/ml. The predicted oral absorption rate in humans for the top seven hits was low like acarbose, which favors the use of these compounds as anti-diabetes in the small intestine.

Conclusion: In summary, the study provides promising insights into the use of natural compounds derived from as potential AG inhibitors to manage diabetes. However, further research, including clinical trials and pharmacological studies, would be necessary to validate their efficacy and safety before clinical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101736PMC
http://dx.doi.org/10.1016/j.jsps.2024.102095DOI Listing

Publication Analysis

Top Keywords

potential inhibitors
12
-butanol fraction
12
top hits
12
inhibitors manage
8
manage diabetes
8
oi_13 oi_66
8
diabetes
5
acarbose
5
α-glucosidase inhibitory
4
potential
4

Similar Publications

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Experimental Research Progress of mPGES-1 Inhibitor 2,5-Dimethylcelecoxib in Various Diseases.

Curr Med Chem

January 2025

Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.

Prostaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases.

View Article and Find Full Text PDF

Delineating CYP2C19-Mediated Interactions: Network Pharmacology Investigation of Ilaprazole and Clopidogrel versus Conventional Proton Pump Inhibitors.

Curr Drug Discov Technol

December 2024

Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, 603203, India.

Background: Clopidogrel, an antiplatelet drug commonly used in cardiovascular disease, is metabolized by the liver mainly through CYP2C19. Concomitant use of Proton pump inhibitors along with clopidogrel may affect the potency of clopidogrel by CYP2C19 inhibition. However, a novel PPI, ilaprazole is known to differ in its pharmacokinetic features, given the potential differences between ilaprazole's interactions and their metabolism with clopidogrel.

View Article and Find Full Text PDF

Introduction: Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!