A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural and biochemical characterization of LIG1 during mutagenic nick sealing of oxidatively damaged ends at the final step of DNA repair. | LitMetric

AI Article Synopsis

  • DNA ligase 1 (LIG1) is crucial for repairing broken DNA strands, but it struggles to repair strands with certain oxidative damages produced during the base excision repair (BER) pathway.
  • Researchers determined the 3D structures of LIG1 interacting with nicked DNA that has these damages and found that it still engages with mutated repair intermediates during the repairing process.
  • The study reveals how LIG1, along with other enzymes like DNA polymerase β (polβ) and APE1, work together to handle oxidative DNA damage and maintain effective DNA repair despite the presence of mutagenic issues.

Article Abstract

DNA ligase 1 (LIG1) joins broken strand-breaks in the phosphodiester backbone to finalize DNA repair pathways. We previously reported that LIG1 fails on nick repair intermediate with 3'-oxidative damage incorporated by DNA polymerase (pol) β at the downstream steps of base excision repair (BER) pathway. Here, we determined X-ray structures of LIG1/nick DNA complexes containing 3'-8oxodG and 3'-8oxorG opposite either a templating Cytosine or Adenine and demonstrated that the ligase active site engages with mutagenic repair intermediates during steps 2 and 3 of the ligation reaction referring to the formation of DNA-AMP intermediate and a final phosphodiester bond, respectively. Furthermore, we showed the mutagenic nick sealing of DNA substrates with 3'-8oxodG:A and 3'-8oxorG:A by LIG1 wild-type, immunodeficiency disease-associated variants, and DNA ligase 3α (LIG3α) . Finally, we observed that LIG1 and LIG3α seal resulting nick after an incorporation of 8oxorGTP:A by polβ and AP-Endonuclease 1 (APE1) can clean oxidatively damaged ends at the final steps. Overall, our findings uncover a mechanistic insight into how LIG1 discriminates DNA or DNA/RNA junctions including oxidative damage and a functional coordination between the downstream enzymes, polβ, APE1, and BER ligases, to process mutagenic repair intermediates to maintain repair efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100680PMC
http://dx.doi.org/10.1101/2024.05.06.592774DOI Listing

Publication Analysis

Top Keywords

mutagenic nick
8
nick sealing
8
oxidatively damaged
8
damaged ends
8
ends final
8
dna
8
dna repair
8
dna ligase
8
mutagenic repair
8
repair intermediates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!