CRISPR ribonucleoproteins (RNPs) use a variable segment in their guide RNA (gRNA) called a spacer to determine the DNA sequence at which the effector protein will exhibit nuclease activity and generate target-specific genetic mutations. However, nuclease activity with different gRNAs can vary considerably, in a spacer sequence-dependent manner that can be difficult to predict. While computational tools are helpful in predicting a CRISPR effector's activity and/or potential for off-target mutagenesis with different gRNAs, individual gRNAs must still be validated in vitro prior to their use. Here, we present compartmentalized CRISPR reactions (CCR) for screening large numbers of spacer/target/off-target combinations simultaneously in vitro for both CRISPR effector activity and specificity, by confining the complete CRISPR reaction of gRNA transcription, RNP formation, and CRISPR target cleavage within individual water-in-oil microemulsions. With CCR, large numbers of the candidate gRNAs (output by computational design tools) can be immediately validated in parallel, and we show that CCR can be used to screen hundreds of thousands of extended gRNA (x-gRNAs) variants that can completely block cleavage at off-target sequences while maintaining high levels of on-target activity. We expect CCR can help to streamline the gRNA generation and validation processes for applications in biological and biomedical research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100742 | PMC |
http://dx.doi.org/10.1101/2024.05.07.592954 | DOI Listing |
Dev Cell
December 2024
Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China. Electronic address:
Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules.
View Article and Find Full Text PDFHematology Am Soc Hematol Educ Program
December 2024
Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.
The cutaneous T-cell lymphomas (CTCLs) comprise a diverse set of diseases with equally diverse presentations ranging from asymptomatic solitary lesions to highly aggressive diseases with propensity for visceral spread. The more aggressive CTCLs, which herein we consider as certain cases of advanced-stage mycosis fungoides/Sézary syndrome (MF/SS), primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (PCAETCL), and primary cutaneous gamma delta T-cell lymphoma (PCGDTCL), require systemic therapy. Over the last 5 years, treatment options for MF/SS have expanded with biological insights leading to new therapeutic options and increasingly unique management strategies.
View Article and Find Full Text PDFCell Rep
October 2024
Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy. Electronic address:
Functional studies of circular RNAs (circRNAs) began quite recently, and few data exist on their function in vivo. Here, we have generated a knockout (KO) mouse model to study circDlc1(2), a circRNA highly expressed in the prefrontal cortex and striatum. The loss of circDlc1(2) led to the upregulation of glutamatergic-response-associated genes in the striatal tissue, enhanced excitatory synaptic transmission in neuronal cultures, and hyperactivity and increased stereotypies in mice.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
Int J Mol Sci
August 2024
Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant β-globin gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!