Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimicrobial resistance is an emerging global threat to humanity. As resistance outpaces development, new perspectives are required. For decades, scientists have prioritized chemical optimization, while largely ignoring the physical process of delivery. Here, we used biophysical simulations and microfluidic experiments to explore how fluid flow delivers antimicrobials into communities of the highly resistant pathogen . We discover that increasing flow overcomes bacterial resistance towards three chemically distinct antimicrobials: hydrogen peroxide, gentamicin, and carbenicillin. Without flow, resistant cells generate local zones of depletion by neutralizing all three antimicrobials through degradation or chemical modification. As flow increases, delivery overwhelms neutralization, allowing antimicrobials to regain effectiveness against resistant bacteria. Additionally, we discover that cells on the edge of a community shield internal cells, and cell-cell shielding is abolished in higher flow regimes. Collectively, our quantitative experiments reveal the unexpected result that physical flow and chemical dosage are equally important to antimicrobial effectiveness. Thus, our results should inspire the incorporation of flow into the discovery, development, and implementation of antimicrobials, and could represent a new strategy to combat antimicrobial resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100760 | PMC |
http://dx.doi.org/10.1101/2024.05.08.591722 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!