A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Time‑dependent ROC curve analysis to determine the predictive capacity of seven clinical scales for mortality in patients with COVID‑19: Study of a hospital cohort with very high mortality. | LitMetric

Clinical data from hospital admissions are typically utilized to determine the prognostic capacity of Coronavirus disease 2019 (COVID-19) indices. However, as disease status and severity markers evolve over time, time-dependent receiver operating characteristic (ROC) curve analysis becomes more appropriate. The present analysis assessed predictive power for death at various time points throughout patient hospitalization. In a cohort study involving 515 hospitalized patients (General Hospital Number 1 of Mexican Social Security Institute, Colima, Mexico from February 2021 to December 2022) with COVID-19, seven severity indices [Pneumonia Severity Index (PSI) PaO/FiO arterial oxygen pressure/fraction of inspired oxygen (Kirby index), the Critical Illness Risk Score (COVID-GRAM), the National Early Warning Score 2 (NEWS-2), the quick Sequential Organ Failure Assessment score (qSOFA), the Fibrosis-4 index (FIB-4) and the Viral Pneumonia Mortality Score (MuLBSTA were evaluated using time-dependent ROC curves. Clinical data were collected at admission and at 2, 4, 6 and 8 days into hospitalization. The study calculated the area under the curve (AUC), sensitivity, specificity, and predictive values for each index at these time points. Mortality was 43.9%. Throughout all time points, NEWS-2 demonstrated the highest predictive power for mortality, as indicated by its AUC values. PSI and COVID-GRAM followed, with predictive power increasing as hospitalization duration progressed. Additionally, NEWS-2 exhibited the highest sensitivity (>96% in all periods) but showed low specificity, which increased from 22.9% at admission to 58.1% by day 8. PSI displayed good predictive capacity from admission to day 6 and excellent predictive power at day 8 and its sensitivity remained >80% throughout all periods, with moderate specificity (70.6-77.3%). COVID-GRAM demonstrated good predictive capacity across all periods, with high sensitivity (84.2-87.3%) but low-to-moderate specificity (61.5-67.6%). The qSOFA index initially had poor predictive power upon admission but improved after 4 days. FIB-4 had a statistically significant predictive capacity in all periods (P=0.001), but with limited clinical value (AUC, 0.639-0.698), and with low sensitivity and specificity. MuLBSTA and IKIRBY exhibited low predictive power at admission and no power after 6 days. In conclusion, in COVID-19 patients with high mortality rates, NEWS-2 and PSI consistently exhibited predictive power for death during hospital stay, with PSI demonstrating the best balance between sensitivity and specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099607PMC
http://dx.doi.org/10.3892/br.2024.1788DOI Listing

Publication Analysis

Top Keywords

predictive power
28
predictive capacity
16
predictive
12
time points
12
sensitivity specificity
12
roc curve
8
curve analysis
8
high mortality
8
clinical data
8
power
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!