Fortification of edible oil with vitamin A is a widely adopted intervention to minimize the effects of vitamin A deficiency in vulnerable groups and mitigate some of its deleterious consequences. Regulatory monitoring is an important prerequisite to ensure that the fortification program is implemented effectively. Standard laboratory analysis methods for vitamin A in oils to assess adequate addition levels remain expensive and time-consuming. Portable testing devices are relatively less expensive in terms of capital investment and cost per test. However, the reliability of results needs to be assured to ensure acceptability and confidence. This study compared a portable device to high-performance liquid chromatography (HPLC) in terms of quantification of vitamin A in both spiked and commercially fortified oils. Nine oils (soybean, palm, cottonseed, rapeseed, corn, peanut, coconut, sunflower, and rice bran oils) were selected and spiked with retinyl palmitate at six different concentrations, and 112 commercially fortified oils were quantified for their vitamin A content using both methods. A good indicator of intra-day and inter-day repeatability (< 10% CV) was obtained for the measurement of vitamin A in the spiked oils for both methods, which denotes a high agreement between them. Vitamin A recoveries were 97-132% for HPLC and 74-127% for the portable device. A strong positive correlation,  = 0.88, is observed between the two methods for the quantification of vitamin A in the commercially fortified oils. The portable device provides a relatively low-cost, quick, and user-friendly alternative to HPLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101343PMC
http://dx.doi.org/10.1007/s12161-024-02613-wDOI Listing

Publication Analysis

Top Keywords

quantification vitamin
8
portable device
8
high-performance liquid
8
liquid chromatography
8
commercially fortified
8
fortified oils
8
oils
6
vitamin
5
vitamin edible
4
edible oils
4

Similar Publications

Background: Lead, a pervasive and toxic environmental pollutant, of particular concern is its impact as a trigger for neurodegenerative diseases. Phoenix dactylifera (date palm), has garnered attention due to its pharmacological properties: antioxidant and anti-inflammatory, attributed to its rich flavonoid content. This assessed the therapeutic potentials of n-butanol fraction of P.

View Article and Find Full Text PDF

Affordable and eco-friendly green spectrofluorometric (FL) methods can enhance the safety and cost-effectiveness of quality assurance and control in ascorbic acid (ASA) formulations. However, most current techniques for ASA analysis have faced challenges like complexity, delayed response times, low throughput, time-consuming procedures, and requirements for expensive equipment and hazardous chemicals for analyte modification. The study is aimed at producing natural carbon quantum dots (NACQDs) from pumpkin seed peels (PSPs), a natural waste material, using a rapid microwave-assisted method.

View Article and Find Full Text PDF

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

Exploring Distinct Second-Order Data Approaches for Thiamine Quantification via Carbon Dot/Silver Nanoparticle FRET Reversion.

Biosensors (Basel)

December 2024

LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.

Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment.

View Article and Find Full Text PDF

Development and validation of a quantification method for direct oral anticoagulants from capillary blood using volumetric absorptive microsampling and online SPE-LC-MS.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany. Electronic address:

The number of prescriptions for new direct oral anticoagulants (DOACs) apixaban, edoxaban, rivaroxaban and dabigatran has increased exponentially in recent years, increasingly replacing the old gold standard, vitamin-K-antagonists. Due to their wide therapeutic range, therapeutic drug monitoring (TDM) is not required, although it has been proven that this could significantly reduce side effects. In order to develop a cost-efficient and simple method for the simultaneous detection of the DOACs and phenprocoumon, a new technology for sample preparation from capillary blood in the ambulant sector named VAMS® was integrated and an LC-MS detector with on-line solid phase extraction (SPE) applying a Turboflow HTLC Cyclone 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!