Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Osteoarthritis (OA) is a chronic and degenerative condition that persists and progresses over time. Sipeimine (Sip), a steroidal alkaloid derived from , has attracted considerable attention due to its exceptional anti-inflammatory, analgesic, antioxidant, and anti-cancer characteristics. However, Sip's effects on OA and its mechanism still need further research.
Methods: This study utilized network pharmacology to identify initial targets for Sip. Functional associations of Sip in OA were clarified through Gene Ontology (GO) enrichment analysis, bioinformatically analyzing a list of targets. Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis assessed pathways linked to Sip's therapeutic efficacy in OA. Molecular docking techniques explored Sip's binding affinity with key targets. In vitro experiments assessed Sip's impact on lipopolysaccharide (LPS)-induced pro-inflammatory factors and its protective effects on collagen-II and aggrecan degradation within the extracellular matrix (ECM). Western blotting and fluorescence analyses were conducted to determine Sip-mediated signaling pathways. Moreover, in vivo experiments using a mouse OA model validated Sip's therapeutic efficacy.
Results: The results from network pharmacology revealed a total of 57 candidate targets for Sip in OA treatment. GO enrichment analysis demonstrated a robust correlation between Sip and inflammatory response, response to LPS and NF-κB-inducing kinase activity in OA. KEGG enrichment analysis highlighted the significance of NF-κB and PI3K-AKT pathways in Sip's therapeutic potential for OA. Furthermore, molecular docking results demonstrated Sip's robust binding affinity with p65 and PI3K. In vitro experiments demonstrated Sip's effectively suppressed the expression of pro-inflammatory factors induced by LPS, such as COX-2, iNOS, IL-1β, and IL-18. Besides, Sip counteracted the degradation of collagen-II and aggrecan within the ECM and the expression of MMP-13 and ADAMTS-5 mediated by LPS. The safeguarding effects of Sip were ascribed to its inhibition of PI3K/AKT/NF-κB pathway and NLRP3 inflammasome mediated pyroptosis. Additionally, in vivo experiments revealed that Sip could alleviate the subchondral remodeling, cartilage degeneration, synovitis as well as ECM degradation a mouse model of OA.
Conclusion: Sip exhibited potential in attenuating OA progression by suppressing the PI3K/AKT/NF-κB pathway, consequently inhibiting the activation of NLRP3 inflammasome and pyroptosis.
The Translational Potential Statement: The translational potential of this articleThis study provides a biological rationale for the use of Sip as a potential candidate for OA treatment, provide a new concept for the cartilage targeted application of natural compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099199 | PMC |
http://dx.doi.org/10.1016/j.jot.2024.04.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!