AI Article Synopsis

  • - Robotics is increasingly being applied in orthodontics, offering potential benefits in both surgical and non-surgical practices, although its full scope remains unclear.
  • - A systematic review of the literature identified 16 relevant studies from over 2,100 articles, revealing that robotics enhances the precision of surgical procedures and assists in customizing orthodontic appliances, despite high costs.
  • - Findings showed low bias and high certainty regarding the effectiveness of robotics in orthodontics, indicating that its advantages generally surpass any drawbacks.

Article Abstract

Robotics has various applications in dentistry, particularly in orthodontics, although the potential use of these technologies is not yet clear. This review aims to summarize the application of robotics in orthodontics and clarify its function and scope in clinical practice. Original articles addressing the application of robotics in any area of orthodontic practice were included, and review articles were excluded. PubMed, Google Scholar, Scopus, and DOAJ were searched from June to August 2023. The risk of bias was established using the risk of bias in non-randomized studies (ROBINS) and certainty assessment tools following the grading of recommendations, assessment, development, and evaluation (GRADE) guidelines. A narrative synthesis of the data was generated and presented according to its application in surgical and non-surgical orthodontics. The search retrieved 2,106 articles, of which 16 articles were selected for final data synthesis of research conducted between 2011 and 2023 in Asia, Europe, and North America. The application of robotics in surgical orthodontics helps guide orthognathic surgeries by reducing the margin of error, but it does not replace the work of a clinician. In non-surgical orthodontics, robotics assists in performing customized bending of orthodontic wires and simulating orthodontic movements, but its application is expensive. The articles collected for this synthesis exhibited a low risk of bias and high certainty, and the results indicated that the advantages of the application of robotics in orthodontics outweigh the disadvantages. This project was self-financed, and a previous protocol was registered at the PROSPERO site (registration number: CRD42023463531).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102082PMC
http://dx.doi.org/10.7759/cureus.58555DOI Listing

Publication Analysis

Top Keywords

application robotics
20
robotics orthodontics
12
risk bias
12
non-surgical orthodontics
8
application
7
orthodontics
7
robotics
6
articles
5
orthodontics systematic
4
systematic review
4

Similar Publications

Bioinspired origami-based soft prosthetic knees.

Nat Commun

December 2024

Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China.

Prosthetic knees represent a prevalent solution for above-knee amputation rehabilitation. However, satisfying the ambulation requirements of users while achieving their comfort needs in terms of lightweight, bionic, shock-absorbing, and user-centric, remains out of reach. Soft materials seem to provide alternative solutions as their properties are conducive to the comfort aspect.

View Article and Find Full Text PDF

Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.

View Article and Find Full Text PDF

Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices.

Adv Healthc Mater

December 2024

Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.

Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.

View Article and Find Full Text PDF

Purpose: This study aimed to explore the potential application of NAO in guiding patients through rehabilitative exercises using external audiovisual stimuli, focusing on temporospatial control in terms of range of motion (ROM), execution time and movement smoothness.

Methods: This is a preliminary analysis involving ten healthy volunteers and two patients with shoulder musculoskeletal disorders. The protocol was developed in two phases (III and IV) with different ROM limits and including flexion-extension (FE), external-rotation (ER) and internal-rotation (IR) exercises, performed at two speeds and both with and without NAO assistance.

View Article and Find Full Text PDF

Multiuser design of an architecture for social robots in education: teachers, students, and researchers perspectives.

Front Robot AI

December 2024

Robot Learning Laboratory, Instituto de Ciências Matemáticas e de Computação (ICMC), University of São Paulo (USP), SãoCarlos, Brazil.

Research on social assistive robots in education faces many challenges that extend beyond technical issues. On one hand, hardware and software limitations, such as algorithm accuracy in real-world applications, render this approach difficult for daily use. On the other hand, there are human factors that need addressing as well, such as student motivations and expectations toward the robot, teachers' time management and lack of knowledge to deal with such technologies, and effective communication between experimenters and stakeholders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!