Aqueous zinc ion batteries (AZIBs) have garnered significant attention in large-scale static energy storage battery systems due to their low cost, high safety and environmental friendliness. However, it has some inherent problems during operation, such as the occurrence of side reactions (hydrogen evolution reaction, HER) and anode corrosion, formation of by-products and growth of metal dendrites. To analyze the mechanism of generation from aspect of the electrolyte solvation structure and make cell efficiency further improvements based on it, so we use DFT calculations to find the most stable solvation structure in AZIBs with ZnCl as the electrolyte and analyze it. We define the relative concentration , and calculate different groups metal cation cluster structures such as , , and that exist at different . We discuss the effect of different clusters formed due to the variations on the battery performance in terms of three aspects: the structural conformation, the cluster characteristics (including the hydrogen bonding network, bond lengths, bond angles, as well as the electrostatic potential ESP) and the cluster performance (including the adsorption energy E, binding energy E, and desolvation energy E). The results shows that the electrolyte metal cation Zn can be coordinated with up to six HO molecules in first shell, and this metal cation solvation structure contributes to the occurrence and formation of side reactions and by-products, which reduces the battery efficiency. Increasing the electrolyte anion Cl concentration by appropriately increasing the helps to desolvate the metal cation cluster structure, which greatly improves the battery efficiency and suppresses the side reactions and by-products. Yet the improvement effect was not obviously further improved by further increasing the Cl concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098851 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e30592 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing University, College of Engineering and Applied Sciences, No. 163 Xianlin Avenue, Qixia District, Nanjing, Nanjing, CHINA.
Electrolyte engineering has emerged as an effective strategy for stabilizing Zn-metal anodes. However, a single solute or solvent additive is far from sufficient to meet the requirements for electrolyte cycling stability. Here, we report a new-type high-entropy electrolyte composed of equal molar amounts of Zn(OTf)2 and LiOTf, along with equal volumes of H2O, triethyl phosphate, and dimethyl sulfoxide, which enhances electrolyte stability by increasing solvation entropy.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
The development of aqueous zinc metal batteries (AZMBs) is hampered by dendrites and side reactions induced by reactive HO. In this study, a hydrated eutectic electrolyte with restrictive water consisting of zinc trifluoromethanesulfonate (Zn(OTf)), 1,3-propanediol (PDO), and water is developed to improve the stability of the anode/electrolyte interface in AZMBs via the formation of a water-deficient interface. Additionally, PDO participates in the Zn solvation structure and inhibits the movement of water molecules.
View Article and Find Full Text PDFBioinform Adv
December 2024
Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.
Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.
Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.
Nat Phys
November 2024
Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland.
A dynamical rearrangement in the electronic structure of a molecule can be driven by different phenomena, including nuclear motion, electronic coherence or electron correlation. Recording such electronic dynamics and identifying its fate in an aqueous solution has remained a challenge. Here, we reveal the electronic dynamics induced by electronic relaxation through conical intersections in both isolated and solvated pyrazine molecules using X-ray spectroscopy.
View Article and Find Full Text PDFUnderstanding how vitamins and fertilizers interact in aquatic environments is crucial for managing water quality, protecting aquatic life, and promoting sustainable agricultural practices. The molecular interactions between nicotinamide (NA) and two fertilizers, potassium chloride (KCl) and diammonium hydrogen phosphate (DAP), were examined by density () and viscosity () measurements in order to investigate and analyze the solvation behavior that occurs in the ternary solutions (NA + KCl/DAP + water). All of these investigations were conducted at temperatures ranging from 293.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!