Benzofurans have intrigued both pharmaceutical researchers and chemists owing to the medicinal usage of their derivatives against copious disease-causing agents (i.e., bacteria, viruses, and tumors). These heterocyclic scaffolds are pervasively encountered in a number of natural products and drugs. The ever-increasing utilization of benzofuran derivatives as pharmaceutical agents persuaded the chemists to devise novel and facile methodological approaches to assemble the biologically potent benzofuran nucleus. This review summarizes the current developments regarding the innovative synthetic routes and catalytic strategies to procure the synthesis of benzofuran heterocycles with their corresponding mechanistic details, reported by several research groups during 2021-2023.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097366PMC
http://dx.doi.org/10.1021/acsomega.4c02677DOI Listing

Publication Analysis

Top Keywords

catalytic strategies
8
comprehensive review
4
benzofuran
4
review benzofuran
4
benzofuran synthesis
4
synthesis featuring
4
featuring innovative
4
innovative catalytic
4
strategies benzofurans
4
benzofurans intrigued
4

Similar Publications

Mn-Doped Ni(OH)2 Nanosheets as High-Performance Electrocatalyst for 5-Hydroxymethylfurfural Electrooxidation.

Chem Asian J

January 2025

Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, school of chemistry and chemical engineering, Shanda nan Road 27, 250100, Jinan, CHINA.

Converting 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) via electrooxidation is a sustainable approach for generating high-value chemicals from biomass. This study presents Mn-doped Ni(OH)2 nanosheets as an effective electrocatalyst for HMF electrooxidation. The Mn-doped Ni(OH)2 nanosheets were synthesized through a microwave-assisted deep eutectic solvent (DES) strategy, followed by an alkaline reflux process.

View Article and Find Full Text PDF

Cancer remains a global health threat, with traditional treatments limited by adverse effects and drug resistance. Nanozyme-based catalytic therapy with high stability and controllable activity provides targeted and specific in situ tumor treatment to address these challenges. More intriguingly, the tremendous advances in nanotechnology have enabled nanozymes to rival the catalytic activity of natural enzymes, presenting an exciting opportunity for innovating antitumor nanodrugs.

View Article and Find Full Text PDF

Striking Improvement of N Selectivity in NH Oxidation Reaction on FeO-Based Catalysts via SiO Doping.

Inorg Chem

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

The emission of NH has been reported to pose a serious threat to both human health and the environment. To efficiently eliminate NH, catalysts for the selective catalytic oxidation of NH (NH-SCO) have been intensively studied. FeO-based catalysts were found to exhibit superior NH oxidation activity; however, the low N selectivity made it less attractive in practical applications.

View Article and Find Full Text PDF

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO.

Angew Chem Int Ed Engl

January 2025

Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.

Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!