malate-quinone oxidoreductase (MQO) is a membrane flavoprotein catalyzing the oxidation of malate to oxaloacetate and the reduction of quinone to quinol. Recently, using a yeast expression system, we demonstrated that MQO, expressed in place of mitochondrial malate dehydrogenase (MDH), contributes to the TCA cycle and the electron transport chain in mitochondria, making MQO attractive as a promising drug target in malaria parasites, which lack mitochondrial MDH. However, there is little information on the structure of MQO and its catalytic mechanism, information that will be required to develop novel drugs. Here, we investigated the catalytic site of MQO (PfMQO) using our yeast expression system. We generated a model structure for PfMQO with the AI tool AlphaFold and used protein footprinting by acetylation with acetic anhydride to analyze the surface topology of the model, confirming the computational prediction to be reasonably accurate. Moreover, a putative catalytic site, which includes a possible flavin-binding site, was identified by this combination of protein footprinting and structural prediction model. This active site was analyzed by site-directed mutagenesis. By measuring enzyme activity and protein expression levels in the PfMQO mutants, we showed that several residues at the active site are essential for enzyme function. In addition, a single substitution mutation near the catalytic site resulted in enhanced sensitivity to ferulenol, an inhibitor of PfMQO that competes with malate for binding to the enzyme. This strongly supports the notion that the substrate binds to the proposed catalytic site. Then, the location of the catalytic site was demonstrated by structural comparison with a homologous enzyme. Finally, we used our results to propose a mechanism for the catalytic activity of MQO by reference to the mechanism of action of structurally or functionally homologous enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097338PMC
http://dx.doi.org/10.1021/acsomega.4c02614DOI Listing

Publication Analysis

Top Keywords

catalytic site
20
catalytic
8
mechanism catalytic
8
catalytic activity
8
malate-quinone oxidoreductase
8
yeast expression
8
expression system
8
site
8
protein footprinting
8
active site
8

Similar Publications

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

The path to survival for pathogenic organisms is not straightforward. Pathogens require a set of enzymes for tissue damage generation and to obtain nourishment, as well as a toolbox full of alternatives to bypass host defense mechanisms. Our group has shown that the parasitic protist encodes for 14 sphingomyelinases (SMases); one of them (acid sphingomyelinase 6, aSMase6) is involved in repairing membrane damage and exhibits hemolytic activity.

View Article and Find Full Text PDF

Resveratrol-Based Carbamates as Selective Butyrylcholinesterase Inhibitors: Design, Synthesis, Computational Study and Biometal Complexation Capability.

Molecules

January 2025

Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia.

Considering our previous experience in the design of new cholinesterase inhibitors, especially resveratrol analogs, in this research, the basic stilbene skeleton was used as a structural unit for new carbamates designed as potentially highly selective butyrylcholinesterase (BChE) inhibitors with excellent absorption, distribution, metabolism, excretion and toxicity ADMET properties. The inhibitory activity of newly prepared carbamates - was tested toward the enzymes acetylcholinesterase (AChE) and BChE. In the tested group of compounds, the leading inhibitors were and , which achieved excellent selective inhibitory activity for BChE with IC values of 0.

View Article and Find Full Text PDF

Atom-Driven and Knowledge-Based Hydrolysis Metabolite Assessment for Environmental Organic Chemicals.

Molecules

January 2025

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.

The metabolism of environmental organic chemicals often relies on the catalytic action of specific enzymes at the nanoscale, which is critical for assessing their environmental impact, safety, and efficacy. Hydrolysis is one of the primary metabolic and degradation reaction pathways. Traditionally, hydrolysis product identification has relied on experimental methods that are both time-consuming and costly.

View Article and Find Full Text PDF

Inorganic pyrophosphatases, or PPases, are ubiquitous enzymes whose activity is necessary for a large number of biosynthetic reactions. The catalytic function of PPases is dependent on certain conformational changes that have been previously characterized based on the comparison of the crystal structures of various complexes. The current work describes the conformational dynamics of a structural model of human mitochondrial pyrophosphatase hPPA2 using molecular dynamics simulation, all-atom principal component analysis, and coarse-grained normal mode analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!