In this work, thermo-oxidative behavior, kinetic triplet, and free radical mechanism of ultraheavy oil during an in situ combustion (ISC) process were systematically surveyed via multiple thermal analysis techniques (TG/DTG/DSC/PDSC), model-free methods, and related mathematical simulation. First, specific mass loss, exothermic intensity, and corresponding temperature intervals were respectively determined in low-/high-temperature oxidation (LTO/HTO) regions. In addition, the comparison of atmospheric/pressurized differential scanning calorimetry (DSC/PDSC) experiments indicated that the pressurized conditions could obviously strengthen the oxidation progress with more heat emission. Then two model-free methods were contrastively employed for PDSC data to calculate LTO and HTO activation energy variations with the conversion rate. Moreover, the acceleratory rate model for LTO and the Sestak-Berggren model for HTO were accordingly picked as the most probable mechanism functions, which were later used to determine the simulated curves. Then, the simulations of α- and dα/d- curves were respectively attained using Friedman equation in MATLAB software and contrasted with experimental data to validate the accuracy of the yielded kinetic triplet and forecast the combustion behavior. Further, the evolution pathways of the underlying oxidation mechanism was illustrated. This study updates the understanding of the nonisothermal combustion process, contributing to the subsequent numerical simulation and feasible investigation for in situ combustion implementation to enhance heavy oil recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097179 | PMC |
http://dx.doi.org/10.1021/acsomega.4c01032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!