Lipid oxidation is a normal process in living muscles, but is escalated postmortem due to the loss of inherent antioxidant defense, which causes quality deterioration of meat. This study investigates the effects of essential oil (EO) supplementation to the drinking water of broiler chicken on physical properties, antioxidants, and lipid oxidation in during frozen storage. Two hundred day-old chicks of arbo acre were allocated to five groups; control (T1) and the groups supplemented with: (T2) (T3) (T4) and (T5) at the level of 300ml/L into drinking water throughout a 49-d study. Thereafter, birds were slaughtered and breast meat excised for assessments during a 28-d storage period at 4 °C using standard procedure. The results show that cooking loss of from T1 birds was not significantly ( > 0.05) different from that of T4, and were significantly higher than those of T2, T3, and T5 birds. Meat from T5 birds showed the lowest drip loss. The results for total antioxidant activity are not similar among sampling days. In general, control group showed inferior values, but T2 and T4 had greater values on days 0 and 28. The rate of lipid peroxidation increased with time; however, EOs administration markedly reduced the peroxidation rates compared to controls. The catalase activity of breast meat was significantly declined from day 14, but was enhanced as an effect of EO consumption especially in group T5 at 21 and 28 d. Supplementation of garlic, turmeric, and cinnamon EOs to broiler chickens increased glutathione peroxidase in breast meat on days 21 and 28, while turmeric EO enhanced superoxide dismutase up to 7 d. In conclusion, EOs are valuable supplements for broiler chickens and potent in enhancing meat quality and prolonging the shelf life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100428PMC
http://dx.doi.org/10.1093/tas/txae073DOI Listing

Publication Analysis

Top Keywords

breast meat
12
lipid oxidation
8
drinking water
8
broiler chickens
8
meat
7
oxidative stability
4
stability meat
4
meat pectoralis
4
pectoralis major
4
broiler
4

Similar Publications

Chicken meat production in organic systems involves free-range access where animals can express foraging and locomotor behaviours. These behaviours may promote outdoor feed intake, but at the same time energy expenditure when exploring the outdoor area. More generally, the relationship of range use with metabolism, welfare including health, growth performance and meat quality needs to be better understood.

View Article and Find Full Text PDF

Poultry represents a rich source of multiple nutrients. Refrigeration is commonly employed for poultry preservation, although extended storage duration can adversely affect the meat quality. Current research on this topic has focused on the analysis of biochemical indices in chilled goose meat, with limited information on changes in metabolites that influence the quality of the meat during storage.

View Article and Find Full Text PDF

The present study aimed to evaluate the effects of different nutritional plans on meat quails subjected to heat stress. A total of 324 quails male European quails () were used, with an average initial weight of 121.48 g ± 3.

View Article and Find Full Text PDF

The chicken cecal microbiome alters bile acids and riboflavin metabolism that correlate with intramuscular fat content.

Front Microbiol

December 2024

Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, China.

Intramuscular fat (IMF) is a key indicator of chicken meat quality and emerging studies have indicated that the gut microbiome plays a key role in animal fat deposition. However, the potential metabolic mechanism of gut microbiota affecting chicken IMF is still unclear. Fifty-one broiler chickens were collected to identify key cecal bacteria and serum metabolites related to chicken IMF and to explore possible metabolic mechanisms.

View Article and Find Full Text PDF

Castration is widely used in poultry and livestock to enhance fat metabolism and improve the flavor, tenderness and juiciness of meat. However, the genetic regulatory mechanism underlying castration consequences have not been clarified. To investigate the key metabolites affecting the quality of capons and the key regulatory mechanisms, Qingyuan partridge roosters were subjected to castration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!